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Abstract

Colour is an important visual cue to understand scenes.
However, most of the previous research in computer vision
has been mainly focused on grey level images. At present,
this tendency has changed and colour has become an
active research topic in computer vision. In this work,
we firstly make a review of colour perception and how
to deal with computational colour. The variation of the
illumination conditions of scenes leads to serious difficulties
when working with colour images. We have classified the
different approaches to deal with the variability problem
into three groups: colour constancy algorithms, definition
of colour invariants and computation of normalized images.
Secondly, we present a simple method for colour naming
which is based on a normalization approach, that is the
comprehensive colour normalization of (Finlayson et al.,
1998). In order to evaluate it, our method has been tested
on a real surveillance application.

Keywords: Computer Vision, Colour Perception, Con-
stancy, Normalization, Naming.
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1 Introduction

Colour is a perceptual phenomenon due to the human vi-
sual system processing of the electromagnetic radiation that
reaches the retina (Levine, 1985). This process can be seen
as a change in representation which, in general, implies a
dimensionality reduction that will be explained in the fol-
lowing sections.

Colour is a visual cue that is normally associated to sur-
face appearance. Although colour has not been given much
importance by researchers up to present (since most of the
previous work in computer vision has been made for grey
level images), the situation is now changing. Colour is be-
coming a very important visual cue for most of the vision
tasks, such as object recognition (Healey and Slater, 1994),
image indexing (Swain and Ballard, 1991), tracking (Crow-
ley and Berard, 1997), shape extraction from colour varia-
tions (Funt et al., 1992), etc.

The objective of this paper is twofold. The first goal is to
make a brief introduction to the colour perception problem
seen from the computer vision point of view. The second
objective is to apply a normalization technique to a specific
vision problem such as color naming.

To introduce colour cue in the visual tasks we must take
into consideration the variability of this visual stimulus.
Colour perception is always dependent on the context: the
illuminant, the receptor sensibility and the scene geometrics
have an important influence on the perceived scene. The
human visual system presents a chromatic adaptation abil-
ity which allows us to avoid, in some sense, those context
influences over the final perception. Any system doing a
visual task involving colour processing should always take
into account the colour constancy problem. This problem
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has been the goal of previous works ((Maloney and Wan-
dell, 1986), (Finlayson et al., 1998), (Funt and Fmlayson,
1995), (Healey and Slater, 1994), (Healey and Wang, 1995),
(Forsyth, 1990)).

One of the most common human visual tasks is the colour
naming. The aim of this task is, given a region from a scene
with a more or less homogeneous colour, to take a decission
in natural language about what is the hue or colour that best
describes the region. Obviously, a lot of shades of the same
colour may be given in natural language descriptions, but we
are oriented to just associate the name of the predominant
colour in each region of the scene. An interesting review
about this problem can be seen in (Lammens, 1994).

This paper has been organized in the following way.
Firstly, we give a brief description of the biological basis of
colour perception in the human visual system. Then, some of
the most important experimental results about colour percep-
tion undertaken in the field of colorimetry are summarized.
In these two previous sections we try to give the basic for-
mulation of colour representation and then, in section 4, we
present the colour problem from the computer vision point of
view. In section 5, we show different approaches to deal with
the colour constancy problem. In section 6, we present our
proposal to apply a colour normalization technique in order
to solve the colour naming problem. In section 7, we apply
our method to a real surveillance problem and we give some
results. Finally, in section 8, we present the conclusions of
this application and explain the lines for future work.

2 Biological Colour Perception

Colour perception phenomenon begins when a luminous
stimulus reaches the retina. However, only a part of the
whole radiant energy that receives the retina causes a visual
stimulus. This is what is called the visible spectrum referring
to those signals containing wavelengths between 380nm and
730nm. Outside this band of frequencies the human visual
system has no sensitivity.

The retina contains two kinds of receptors: rods and
cones, which receive their names from their shape. While
rods are sensitive to low intensity stimulus, cones give re-
sponse to higher intensities than rods and also provide the
information used by the human visual system to produce the
colour perception sensation.

Colour perception is related to the presence in the cones
of three different photopigments. Depending on these pho-
topigments there exist three types of cones. Each one of
them presents different sensitivity and concentrates its re-
sponse on certain wavelengths. Thus, the three cone types
are called ! (large), m (medium) and s (small) related to the
part of the spectrum where they present maximum sensi-
tivity. Normally, cones are also called red, green and blue
respectively, although the maximum sensitivity wavelength
does not exactly correspond to these colours.

The spectral sensitivity curves of the three cone types in
the retina have been measured by different authors and with
different techniques. In all cases, the results have been very
similar (Levine, 1985). In figure (1) the sensitivity curves
estimated from psycophysical data can be seen.

o
o

RELATIVE SENSITMTY
o o

o

550 600 650
WAVELENGTH (nm)

Figure 1: Sensitivity curves of the three cone types of the
human visual system

Given an input stimulus I(\) trichromatic colour percep-
tion theory considers that there are three independent parallel
processes in the three types of cones. Each process is taken
in the retina and it is done in two different stages. The first
part of the process can be seen as a linear transformation
of the input stimulus into a three-dimensional space that is
normally called trivariant space. This transformation is for-
mulated by equations (1), (2) and (3).

Amaz

A= / I()I(A)dA )
Amin
Ama=

Ap = / I)m(N)dA @
Amin
Amaz

A, = / I(\)s(\)dA 3)
Amin

where A;, A, and A, are the coordinates values in the
trivariant space, Amin and Amqz are the limits of the vis-
ible spectrum and I(X), m(A) and s(X) are the sensitivity
functions of the retina receptors.

According to trichromatic theory, the second stage of the
process, which consists on a non-linear transformation, is
taken from input stimulus representation in the trivariant
space. The way this second step works is still almost un-
known, but it is supposed to be related to chromaticity adap-
tation and other intensity and temporal effects. This second
stage of the process can be described by equations (4), (5)
and (6).

lo(t) = filAi(2),1] 4
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mo(t) = fm[Am(2), 1] 5

S0 (t) =fs [As (t), t] (6)

where lo(t), mo(t) and sq(¢) are the values corresponding to
input stimulus in the resulting three-dimensional space and
fi, fm and f, are the transformations applied to each one of
the input stimulus coordinates in the trivariant space.

There are physiological and psycophysical evidences
(Ebenhoh and Hemminger, 1981) that there exists a second
level of processing based on colour differences. According
to the opponent-colour model, this process is done in the
high levels of the lateral geniculate body of the visual cor-
tex.

A spatial opponent system is that in which two concen-
tric regions of the receptive field demonstrate antagonistic
behavior. Thus, each one of the regions is activated or inhib-
ited by opposite stimulus.

The opponent-colour model considers the existence of
four different types of opponent cells. One type is excited
by a red signal and is inhibited by a green signal, while a
second type has the opposite behavior. This pair is normally
referred as the ” RG” system. The two other types of oppo-
nent cells have the same behavior as the ” RG” system but
with yellow and blue signals. This pair is referred as the
”YB” system. The model is completed by two types of non-
opponent cells which are only sensitive to intensity changes
and that are referred as the ”Wh — Bl” system.

There are several models that try to explain the relation-
ship between the cones output and the opponent-colour sys-
tem, but the mechanism followed by the human visual sys-
tem is not understood yet.

It is also unknown the way in which the human visual
system manages the information from the opponent-colour
system to codify the colour names and to label each stim-
ulus with its corresponding name. It seems quite clear that
the "Wh — BI” system provides the intensity information,
but the way in which chromaticity information from ” RG”
and "YB” systems is used to codify hue and saturation has
not been determined up to now. Moreover, the colour nam-
ing mechanism is also influenced by the knowledge com-
ing from the illuminant properties and the surface properties
of the object being viewed. The human visual system has
colour constancy mechanisms to controlate this dependency
from the illuminant. Thus, the same surface under differ-
ent illuminants is normally perceived as being of the same
colour.

3 Colorimetry

Once the causes of the colour perception in the human vi-
sual system have been introduced, we will see how this phe-
nomenon has been studied by the physics. Colorimetry is the
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field of the physics which has mathematically specified the
colour perception phenomenon.

Isaac Newton is considered the first who established the
relationship between light and colour. In 1704, Newton ob-
tained the colour spectrum that forms white light using a
glass prism to decompose sunlight.

In the early 19th century, Thomas Young set one of the
basis of colorimetry when he suggested that in the human vi-
sual system colour processing there were only involved three
independent variables related with three primary colours. In
1854, Grassman suggested that colour matches are based on
linear operations and enunciated the colour additivity law.

Taking into account the two previous assumptions (three
variable representation and additivity law) several matching
colour experiments have been carried out. These experi-
ments are based on mixing three monochromatic lights R,
G and B in order to obtain the equivalent of a given colour
light Q by only adjusting the intensities r, g and b of the
three monochromatic lights.

In 1931, the CIE (Comission Internationale de
I’Eclairage) determined the colour-matching functions
for a standard observer 7(\), () and b(\), which define the
amount of each wavelength that is needed to obtain a certain
colour of the spectrum (Figure 2).

TRISTIMULUS VALUES

05 H \4/ H H H H h HOR—

30 400 450 500 550 600 650 700 750 GO0 650
WAVELENGTH (nm)

Figure 2: Colour matching functions for the RGB system

From the results obtained on these experiments the
trichromatic generalization has been accepted. That is, un-
der a wide range of conditions, most of the colour stimu-
lus can be specified with only three coordinates in a three-
dimensional subspace generated from three primary vectors
R, G and B. This relationship can be expressed as:

Q()\) = RR + GG + BB 7

where R, G and B are the tristimulus coordinates and they
are obtained from equations (8), (9) and (10).
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R= / Q(NF(\)dA (8)
A

6= [ Qg ©
A

B = / Q(N)b(N)dA (10)
A

Nevertheless, the RGR space presents some problems:

¢ The 7()\) function has negative values for some wave-
lengths, which can be an impediment in the design of
colour measurement instruments.

e There is no axis directly related to light intensity.

In order to solve these problems the CIE defined another
colour space referred as XYZ, which is obtained from the
application of a linear trasformation to the RGB space. This
new system is based in the use of three imaginary primitives
that are positive for all A.

In this new space, the tristimulus values for a given colour
are obtained from equations (11), (12) and (13).

X = / QNF(A)dA (11)
A

Y= / QUF(N)EA (12)
A

Z= / Q(NE(N)dA (13)
A

where Z(\), 7()\) and Z(A) are the colour-matching func-
tions for the XYZ space. Their graphic representation can be
seen in figure (3).

2-5""‘1""'?""1 """ T TTTTTTaATTTT l‘""?""'i""":

___________________________
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Figure 3: Colour matching functions for the XYZ system

As well as in the previous case, in this new space there
not exist a perceptual interpretation of the coordinates, with

the exception of the approximated relationship between Y-
coordinate and colour intensity. However, the XYZ system
has been accepted as a standard colour system.

Therefore, we can state that colorimetry has contributed
with the definition of a psycophysical model to define colour
as it is viewed by humans and, moreover, has created a stan-
dard colour space to have a measure of colour which is the
base of most of the colour measurement instruments.

4 Colour in Computer Vision

Up to this point, we have analysed the human visual pro-
cessing of the luminous stimuli that reach the retina. These
stimulus will normally be the result of a light reflected by the
surface of an object (Figure 4).

Figure 4: Luminous stimulus that reach the retina, are
normally the result of the reflected light by a surface

The radiant energy reflected by an object surface can be
expressed as a function of the incident light, P()), and the
surface reflection, S()\). Therefore, XYZ coordinates can be
expressed as (14), (15) and (16).

X = / P(A)SOT(N)dA (14)
A

Y = / PO)ST(N)dA (15)
A

Z= / P(A)SNE(N)dA (16)
A

In computer vision, the receptor is not the human eye and
image is formed by an acquisition device (Figure 5).

The way an image acquisition device works is based on
the use of prisms to decompose the input signal into a set of
signals only containing wavelengths that correspond to each
one of the camera sensors.

To work in colour, three sensor devices are normally used.
The three sensors provide a decomposition of the input sig-
nal into three channels R.(red), G.(green) and B.(blue).
These values can be expressed as (17), (18) and (19).
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/'\

Figure 5: In computer vision the receptor is not the human
eye, but an acquisition device

R = / P(\)S\)R-(\)dA an
A

G. = / P(\)S(A\) Ry (\)dA (18)
A

B, = / P(N)SO\)By(A)dA (19)
A

where R.()), R,(A) and Ry(X) are the spectral response
functions of sensors for red, green and blue channels , re-
spectivelly. Given that, R, G and B, values depend on the
camera spectral response, which implies that the RGB space
above defined is specific for each device.

Nevertheless, colour in computer vision is a surface prop-
erty that.allows obtaining information useful for different
visual tasks: object segmentation, object recognition and
classification, shape extraction from colour, colour naming,
etc... The input to all those visual tasks is always a digi-
tal image represented in the RGB space of the acquisitions
device which has been used.

4.1 Colorimetry vs. Computational Colour

Once the visual tasks in computer vision that involve colour
have been introduced (that is what we call computational
colour) let us see how the colour bases set by colorimetry
can be exploited for colour vision.

From colorimetry point of view, any colour representa-
tion is based on the fact of relating colour to the standard
XYZ space. In computer vision, the starting-point is always
the RGB space which is dependent on the acquisition device
used to acquire the images.

It is easy to work with the XYZ space if the reflectance
functions of the surfaces and the illuminant spectral com-
position are known, since Z(A), F(A) and Z(X) functions
are tabulated. However, the problem is that the illuminant,
the reflectance functions of the surfaces and the spectral re-
sponses of the camera are normally unknown. Thus, the pro-
cess to obtain the tristimulus coordinates of the XYZ system
is further complicated.

34

In order to solve the problem of how to pass from the de-
vice RGB space to the standard XYZ system, two alterna-
tives are possible:

e To work in controlled environments which allow mea-
suring the illuminant spectrum and the surface re-
flectances.

e To assume that the transformation from the camera
RGB space to the standard XYZ space is linear and try
to estimate it from the knowledge of the XYZ and RGB
coordinates of a basic set of acquired surfaces.

Above alternatives are based on the fact of being working
in controlled environments where it is possible t0 measure
the illuminant spectrum and the surface reflectances. Most
of the research in computer vision does not present these
possibilities and researchers work on standard sets of images
for which no acquisition condition is known. Hence, it is
normal the use of the acquired RGB coordinates followed
by computational processing in order to solve the derived
problems.

Up to this point, above arguments make us to conclude
that colour can be a very different problem depending on the
way in which it will be handled. Given that, in computer
vision, any problem is normally posed from a set of RGB
images, taken from a non-controlled scene and with an un-
known camera. Thus, we are not able to use standard colour
spaces from colorimetry and we have to dessign algorithms
able to overcome the uncertain conditions of the acquisition
process of any scene.

4.2 The Colour Constancy Problem

The main problem that any colour application directly work-
ing with the RGB values will find is the variation of the
illuminant in intensity and/or colour. As it has been pre-
sented in the previous sections, colour perception is related
to the illuminant spectral composition. Thus, the same sur-
face may present very different appearances under different
illuminants or under different intensities of the same illumi-
nant. In Figure (6) an example of the variation that the same
scene can suffer when there are changes in the illuminant
characteristics is shown.

Figure 6: The same scene viewed under different light
conditions may present very different appearance
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However, a human observer will still be able to infer that
the colours of the two kind of peppers in figure 6 are yellow
and red. That is because the human visual system has an
adaptative mechanism that allows us to avoid the spectral
variations of the light of the scene and assign stable colour
names to objects. This perceptual ability is called colour
constancy (Figure 7).

Figure 7: Colour constancy ability of the human visual
system allows us to perceive the same colour although the
viewed surface is illuminated by very different lights

The way in which the human visual system performs its
colour constancy ability is still unknown. The most accepted
hypothesis is Von Kries model (Worthey and Brill, 1986),
also called the coefficient rule, which suggests that a change
on the chromatic adaptation is caused by the sensitivity re-
duction or extension in each kind of cone and without affect-
ing their relative spectral sensitivity.

Since standard cameras do not have colour constancy abil-
ity, the illumination variability is one of the main problems
in computer vision. Simple changes in the illuminant inten-
sity or colour may dramatically decrease the performance of
RGB-based colour algorithms.

In order to solve this limitation, computer vision has de-
veloped a set of techniques that try to introduce the chro-
matic adaptation ability of the human visual system. These
algorithms can be classified into three main groups, and they
will be used depending on the visual task we want to solve.
The three gropus of computation techniques developed in or-
der to deal with the colour constancy problem are presented
in the next section.

5 Techniques to deal with colour vari-
ability

Before studying the different computational approaches to
the problem preserited in the preceeding section, we must
consider the fact that the light reflected by a surface not
only depends on the spectral properties of illumination and

surface reflectance. It also depends on other factors such
as specularities and mutual illumination (Finlayson et al.,
1993). In order to simplify colour analysis it is usual to set
some restrictions over real world.

One of the most extended models is to consider real world
as a simplified Mondrian world. That is to consider the im-
age as a planar surface composed of overlapping Lambertian
surfaces. A Lambertian surface is a uniformly diffusing sur-
face for which the luminous intensity I, in any given direc-
tion varies as the cosine of the angle e between that direction
and the normal (e = 0) to that surface, that is,

I =I.—pCcOse

This implies that a Lambertian surface presents the same
brightness in all its points despite the direction from which
it is viewed (Wyszecki and Stiles, 1982). Moreover, in Mon-
drian world model, a spatially uniform intensity and a con-
stant spectral power distribution of the illuminant are as-
sumed. Hence, the only factor affecting the surface colour
appereance is the variation of illumination across the time.

Once the general assumptions for the image model have
been presented, we will see a generic classification of the dif-
ferent solutions for the illuminant variations that have been
proposed during the last twenty years. Even though a lot
of very different computational techniques have been devel-
oped, actually most of them can be classified into three main

groups:

¢ Colour constancy methods
These techniques attempt to estimate the characteristics
of the illuminant used to acquire the images and then
remove the colour cast due to the estimated illuminant.

¢ Invariant measures
These methods are based on the definition of measures
that have the property of being invariant to illumination
changes and that extract the image properties to be anal-
ysed. When a colour invariant is applied, the conven-
tional image structure is lost, since invariant measures
values do not directly represent pixel’s colour values.

o Normalization techniques
These algorithms do a representation change of the 1im-
age to a space where illuminant influence has been re-
moved, even though the new space might not be a stan-
dard space and might not let recover the surfaces re-
flectances.

Recent work (Finlayson et al., 1999) group these two last
approaches together under the name of ’invariant normaliza-
tions’. However, we have separated them in terms of the two
objectives they pursuit.

In the following sections (5.1, 5.2 and 5.3) this classifica-
tion of the methods is presented in more detail.
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5.1 Colour Constancy methods

Colour constancy methods are based on the definition of a
standard illuminant usually referred as the ’canonical illu-
minant’. This canonical illuminant is used to obtain a sta-
ble descriptor for object surface preperties, that is, the RGB
values of each pixel are transformed to the canonical RGB
descriptor relative to the canonical illuminant. Such descrip-
tor is illuminant independent and it represents the colour that
would have been perceived if the surface had been acquired
under the canonical illuminant.

Hence, colour constancy problem in computer vision can
be expressed as the problem of parametrizing the transfor-
mations which allow obtaining an image of the scene as it
would dppear under the canonical illuminant, from the im-
age of the scene under an unknown illuminant. That is, for
each RGB vector p; corresponding to a pixel of an image Z
a mapping M to the illuminant independent descriptor d; is
applied:

vﬁi € I, di = Mﬁ, (20)
where M is a linear transformation.

Finlayson et ai. have demonstrated that perfect colour
constancy can be achieved by a 3 x 3 diagonal matrix trans-
form for typical scene illuminants (Finlayson et al., 1993).
Then, equation (20) becomes (21).

Vp; € Z,d; = Dp; (21
where D is the 3 x 3 diagonal matrix that maps the RGB
vector P; to the illuminant independent descriptor d;

This model can be considered valid if we suppose we are
working with narrow-band response cameras. Otherwise, a
sensor transformation 7 must be applied prior to the appli-
cation of a diagonal matrix. In that case, equation (21) be-
comes (22).

vp; € Z,Td; = DTp; (22)

As it can be seen, when the mapping is a 3 x 3 diagonal
matrix, it is just the application of the coefficient rule or Von
Kries Law since each image channel is scaled by a factor that
do not depend on the other two.

Another important fact to point out is that the mapping
must only account for the relative spectral power distribu-
tion change between the unknown illuminant and the canon-
ical (Finlayson, 1996; Forsyth, 1990) but not for intensity.
In order to be intensity independent one of the most used
normalizations is to pass the image to chromaticity coordi-
nates (see section 5.3) before applying the colour constancy
algorithm.

Many different colour constancy methods have been de-
veloped. Although there were early implementations in
the 60’s and 70’s, the real colour constancy interest has
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come in the last twenty years: greyworld algorithm (Buchs-
‘baum, 1980), white-patch retinex (Wandell, 1986), gamut-
constraint methods (Finlayson, 1996; Forsyth, 1990) and
neural network-based approaches (Funt et al., 1996).

Unfortunately, current colour constancy methods work
well on some images but they obtain very poor results when
methods constraints are not completely fulfilled. Colour
constancy methods have been tested for a typical computer
vision task such as colour indexing in (Funt et al., 1998),
where results indicate that current colour constancy methods
are far from being applicable to real problems.

5.2 Colour Invariants

Another possibility to achieve the scene illumination invari-
ance is to define image descriptors based on measures which
are independent from the intensity and/or the spectral com-
position of the illuminant, instead of estimating the illumi-
nant of the scene.

Illuminant-invariant measures are usually defined in terms
of relationships between image pixels or channels. Hence,
the typical image structure is lost since the result of the mea-
sure is not normally directly related to the RGB values in
the original image. However, the loss of the individual pix-
els colour information is not important if the illumination-
invariant descriptor provides the appropiate information for
the concrete task in which the invariant measure is applied.

Hence, an illuminant-invariant measure f is a function:

f:R¥*" 5 R™

where f has the property of being illuminant-independent,
n is the number of pixels in the input image and m is the
dimension of the result. Let Z; and Z; be two colour images
of the same scene viewed under two different illuminants,
then:

(23)

(1) = £(Zs)

That kind of measures have been applied to different tasks
such as object recognition (Funt and Finlayson, 1995; Fin-
layson et al., 1996) and texture representation (Healey and
Wang, 1995).

(24)

5.3 Colour Normalizations

Colour normalizations make a representation change of the
image to another space which is not affected by illuminant
variations or scene geometry. Thus, two images of the same
scene seen under different illuminants should be represented
by two normalized images with similar chromatic properties.

Just like invariant measures, colour normalizations do not
estimate the illuminant of the scene, but they tend to remove
the dependence of the image from the illumination condi-
tions. However, while illuminant-invariant measures do not
always output an image, the result of a colour normalization
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is another image but represented in a different space which
have the property of being intensity and/or colour illuminant
independent.

The transformation of the representation space from RGB
to the new space is calculated only using the image informa-
tion, that is, given an image Z,

Vﬁi € I,Ei =N0‘r’m(ﬁi,l) (25)
where d; is the representation of pixel p; in the new space
and Norm is the normalization function:

Norm : R® x R®*" — R3 (26)

As image variations are mainly due to intensity and chro-
maticity illuminant variations, intensity and chromaticity
image normalizations have been widely used in colour
computer vision.

Pixel based normalization
The aim of the pixel based normalization (Swain, 1990) is to
remove the variation due to intensity changes. To achieve it,
the image acquisition system is assumed to have a linear re-
sponse. Therefore, when light intensity is scaled by a factor
s, the image is scaled by the same factor on its three chan-
nels. That s, each pixel (r, g, b) under the original illuminant
becomes (sr, sg, sb).

The pixel based normalization consists on dividing each
pixel of the image by the sum of its three RGB values:

ST sg sb
, , 27
sr + sg + sb’ sr + sg + sb’ sr + sg + sb

Hence, factor s is cancelled:

( A RN ) (28)
r+g+br+g+br+g+>b

This normalization is, indeed, a change on the space of
representation. The new space does not take into account the
illumination intensity since the factor s is cancelled. More-
over, pixel based normalization brings a dimensional reduc-
tion since the three new values, normally called chromaticity
coordinates, sum one:

r g N b _
r+g+b r+g+b r+g+b

Hence, each one of the three chromaticity coordinates can
be obtained from the other two.

1 (29)

Channel based normalization

The objective of the channel based normalization (Finlayson
et al., 1996) is to deal with the illuminant colour changes. In
that case, it is assumed a Von Kries mode! for the chromatic
adaptation. This model can be considered valid in computer

vision if we suppose we are working with narrow-band re-

sponse cameras. In that case, illuminant chromaticity vari-

ation can be represented by scaling each one of the pixel’s

channels (r, g, b) by a different factor, this is, (ar, Bg,7b).
Channel based normalization works as follows:

aR _ R (30)
« Eil R; Zil R;
8G G
= 31
B Ef;l Gi Zi\;l Gi
B B (32)

N - =N
YYoim1 Bi 2= Bi

where R, G and B represent the image channels and R;,
G; and B; represent the i-th pixel of the corresponging chan-
nel.

After the normalization, the pixel’s new values do not
depend on the illuminant chromaticity since factors o, B
and vy are cancelled.

Comprehensive colour normalization

In the real world, it will be quite normal to find illuminant
intensity and chromaticity variations at the same time. The
problem with the above normalizations is that none of them
is able to deal with both variations at the same time. In order
to solve this problem, comprehensive colour normalization
(Finlayson et al., 1998) iteratively applies pixel and channel
based normalizations until each normalization stage is
idempotent, that is when each normalization does not affect
the image. The algorithm always converges and the solution
provided is unique. Comprehensive normalization has
been evaluated and it has been demonstrated that it obtains
better results than colour constancy methods for common
computer vision tasks such as object recognition (Finlayson
et al., 1999). This algorithm is explained in more detail in
section 6.1.

6 A method for Colour Naming

One of the most common visual tasks is colour naming. This
process consists in the labelling of a scene region with a
colour name and it is easily done by the human visual sys-
tem. Nonetheless, colour naming is a complex problem,
from a computational point of view, due to the variation a
scene can suffer as a consequence of the illumination condi-
tions. The mechanism used by the human visual system to
implement colour naming is not known yet. Although there
exist some models on how to assign colour names to input
stimulus (Uttal, 1973), it is still an open research topic.
However, what seems to be clear is that the chromatic-
ity adaptation plays an important role in the colour naming
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process performed by the human visual system. since the
same surface under a wide range of illuminants is always
perceived as being of the same colour.

The colour naming method that we propose in this paper is
based on the application of a normalization technique in or-
der to avoid the illuminant and sensor influence on the scene.
The use of this normalization implies to do the following as-
sumption:

Assumption: Two similar colours under different illumi-
nant conditions always have aproximately similar nor-
malized coordinates.

Above assumption implies to consider a normalization
technique as a colour constancy technique. To be able to
consider it we have to stablish some restrictions on the pro-
cessed scenes. These are:

¢ The illuminant and sensor models are those assumed by
the normalization process.

e The scene context does not vary dramatically between
images, that is, there is a common background in all the
images.

In section 7, we will see that these constraints are fullfilled
in our application. Hence, in the following subsections, we
explain the normalization technique used in our algorithm
and give a basic scheme of our colour naming method.

6.1 Comprehensive Colour Image Normalization

In the definition of the comprehensive colour image normal-
ization (Finlayson et al., 1998) two important assumptions
are made. On one hand, it is assumed that the image acqui-
sition system has a linear response. Therefore when light
intensity is scaled by a factor s, the image is scaled by the
same factor on its three channels. Thus, each pixel (r, g, b)
under the original illuminant becomes (sr, sg, sb).

The second assumption is to consider a Von Kries model
for the chromatic adaptation. This model can be consid-
ered valid in computer vision if we suppose we are work-
ing with narrow-band response cameras. In that case, illu-
minant chromaticity variation can be represented by scaling
each one of the pixel channels (r, g, b) by a different factor,
this is, (ar, 8g,7b).

If we put the N pixels of an image into a matrix Z of
dimension N x 3, where each row are the values (r, g, b)
of an image point, then we can represent the model of the
image colour variation as:

D’ID°

where D? represent the N x N diagonal matrix of the
intensity variation factors on the whole image (lighting ge-
ometry) and D¢ represents the 3 x 3 diagonal matrix of the
colour illuminant variation. This expression can be seen as:
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To avoid the illuminant intensity dependence, the most
common transformation is to pass to chromaticity coordi-
nates space:

T g b
r+g+br+g+br+g+b

Hence, a function R() which normalizes each pixel of the
image can be defined. Function R() follows equation (34).

(33)

Iz . ]

ket Zik

where subscripts i, j are referred to the ij-th element of a
matrix. It must be noticed that after applying that normaliza-
tion, each row of matrix Z sums 1. Thus, the total sum of the
pixels in the image is V.

To avoid the dependence from the illuminant colour, a nor-
malization over each one of the channels can be applied ac-
cording to equations (35), (36) and (37).

R(Z):; = (34)

aN/3R . N/3R (35)
o Zfil R; Eil R;
BN/3G N/3G
= (36)
B Zfil G; Zfil G
ny/3B N/3B (37)

N - &N
’YZi:l B; Zi:l B;

The factor N/3 which multiplies each fraction of equa-
tions (35), (36) and (37) is applied to obtain a N/3 sum on
each column. Thus the total sum of the pixels from image Z
isN.

As was done before with the intensity normalization, a
function C() which normalizes each column of matrix Z is
defined. Such normalization is ruled by equation (38).

N/3Z; ;
N
Zkzl Ikl]
The comprehensive colour image normalization makes the
two normalizations with an iterative algorithm that always

converges and has a unique solution (Finlayson et al., 1998).
The steps of the algorithm are:

C(T)i; = (38)

1. Ty = 7 Initialization
2. Iiyyn = C(R(Z;)) Iteration step
3 Tiyw = I; Termination condition
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This algorithm succesively applies intensity and illumi-
nant colour normalizations until the termination condition is
reached, that is when both normalizations hardly affect the
obtained image. Normalization algorithm may be seen as
the process of finding the image representation change that
fulfil both row and column constraints (rows sum one and
columns sum N/3) at the same time.

6.2 The Colour Naming Algorithm

Once we have explained the normalization method, let us
give a basic scheme of our method, based on two main
phases: learning and naming.

Learning.

The learning step has the goal of obtaining a chromaticity
diagram tessellated according to the regions defined by the
points of the diagram which have the same colour label. The
input to the learning step must be a set of images containing
different regions labelled with the name of the predominant
colour in the region. Thus, the learning process performs in
this way:

1. For each image in the learning set:

1.(a) Compute the normalized representation of the im-
age.

1.(b) For each labelled region in the image, map the av-
erage of the normalized coordinates of the region onto
a chromaticity diagram. (For the rest of this paper, we
will refer to it as the 'Normalized Chromaticity Dia-
gram’).

2. Compute the convex hull of each set of samples labelled
with the same colour name.

3. Tessellate the normalized chromaticity diagram accord-
ing to the convex hulls computed in 2.

Naming.

The naming process of a region from an image is a simple
mapping between the region and a colour name. This process
performs as follows:

1. Compute the normalized representation of the image
which contains the region to be named.

2. Average the normalized coordinates of the region.

3. Give the colour label corresponding to the average com-
puted in 2 within the normalized chromaticity diagram.

Once we have introduced the proposed method, we will
explain, in more detail, the construction process of the chro-
maticity diagram.

63 Constructing a normalized chromaticity diagram

As has been seen in the previous sections, the application
of the Comprehensive Colour Image Normalization implies
a representation change from the RGB original image coor-
dinates to chromaticity coordinates. From (33) can be seen
that:

r_,_9 b __
r+g+b T+g+b rTHg+b

As each one of the resulting coordinates can be obtained
from the other two, it is not necessary to work in a three-
dimensional space. The effects of the normalization can
be observed over a chromaticity diagram which is obtained
from the intersection of the rgb space with the 7 + g+ b=1
plane (Figure 8).

1 (39)

r+g+b=1

Figure 8: The chromaticity diagram is obtained by
intersecting the rgb space with the r + g + b= 1plane

To create the normalized chromaticity diagram from the
normalized images a set of 55 different colour patches sam-
ples were used as learning set. We selected the most com-
mon colours for our specific application and different sam-
ples of each colour to be named were included in the learning
set. Each sample was acquired in eight different conditions
and was labeled with one of the eight selected names to be
the basic colours, these are, grey, green, blue, purple, red,
brown, orange and yellow. Notice that, as colour normal-
ization implies a loose of the intensity information, all the
colours in the grey scale are labelled as ’ grey’.

Following the learning step of our algorithm, for each
sample we compute the average of the region coordinates
in order to obtain the representative point of that sample in
the normalized chromaticity diagram.

Once all the representatives of the samples in the learning
set have been represented in the normalized chromaticity di-
agram, it can be tessellated according to the regions defined
by the convex hulls of each set of points labelled with the
same name. The resulting normalized diagram is shown in
figure (9).

As was seen in section 6.1, the comprehensive image nor-
malization is context dependent. Hence, the regions of the
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Figure 9: Normalized chromaticity diagram obtained after
the application of the learning step of the colour naming
algorithm

normalized chromaticity diagram are dependent on the im-
age content. That is, the space occupied by each colour can
vary if the learning set is changed.

Our method has obtained very good results in controlled
experiments with a Macbeth colourchecker (above 97% of
correct labellings). However, in order to evaluate the perfor-
mance of the method in a real problem, it has been applied
to a real surveillance problem. The results obtained in that
case are presented in the next section.

7 Colour naming on a real application

The application in which our colour naming method has been
tested is a computer system to automatically describe peo-
ple in natural language and index that information and the
person’s identity in a database. The description is based on
physiognomical and clothing features and it is done in the
same terms as it would be done by a human observer. The
goal of this application is to obtain an accurate description
of the person and, thus, be able to retrieve the right identity
from the database corresponding to a given description.

The system is thought to work on controlled stablishments
or restricted areas where people must give their identification
before coming in. However, in such stablishments, if anyone
has a problematic behavior, it is normally quite difficult to
obtain a fast identification of the subject. To overcome this
problem, the application makes a personal description based
on the content of an image of the subject which is acquired
when the person is giving his/her identification. The image
and the text-description of the person is attached to the corre-
sponding identity data and it is indexed in a database. Hence,
if there is any problem with anyone inside the stablishment,
the security staff can achieve a fast identification of the sub-
ject by making a query on the database. In that database,
a query consists on the description of a person and the sys-
tem will retrieve the images corresponding to the most sim-
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ilar people to the given description. The final identification
among the retrieved images will be done by the security staff
and the system will provide the identity data of the final elec-
tion.

The first step of the system is to obtain a good image of
the person to be described. With this objective, the camera
is fixed behind the reception desk and images are acquired
when the person is standing up in front of the reception desk.
Hence, the system is able to obtain frontal images of the per-
son and with the subject approximately placed on the same
position of the image. An scheme of the acquisition system
can be seen in figure 10.

Figure 10: Scheme of the working environment used to
acquire the subject’s image. The camera is fixed behind the
reception desk in order to obtain a frontal image of the
subject with the same background for all the images

The way the images are acquired (with a fixed camera)
allows the system to accomplish the restriction specified in
section 6, since all the acquired images present a similar
background and the only important variation in the image
is the person to describe. Thus, the context variation is small
and the normalized chromaticity diagram is quite stable with
well defined regions for the different colours.

Once the image has been acquired, it is processed in or-
der to obtain the subject’s description. Apart from clothing
colour, other features considered by the system are height,
hair colour, presence of glasses, beard or moustache, .
However, in this work, we only deal with the problem of
the clothing colour description.

Using the real environment, a set of 165 images were ac-
quired as a test set. From these images a total of 330 colour
regions were selected. In the final system, the regions to be
named will be automatically segmented before the applica-
tion of the colour naming process over each region. In figure
(11) some examples of selected regions are shown.

All the selected regions were labelled with a colour name
by the security staff and that labelling was compared with the
results obtained with the different methods that were tested
in order to obtain the rate of correct labellings achieved by
each method. However, any result has to consider the subjec-



R. Benavente, R. Baldrich, M. C. Olivé, M. Vanrell: Colour Naming Considering the Colour Variability Problem

Figure 11: Examples of regions selected on the acquired
images. As can be seen in the images, there are few
restrictions over the working environment illumination
conditions

tivity of colour naming problem, since a region is not always
named with the same colour term by two different people.

In order to see the improvement apported by the use of
our colour naming method based on normalized chromatic-
ity coordinates, the results obtained were compared with the
ones obtained by different approaches to the problem. The
other methods used in this test were based on the use of RGB
coordinates and chromaticity coordinates.

In the case of the RGB-based methcd, the labelling of
the regions was done following a nearest neighbour strategy:
the RGB average of the region was labelled with the colour
name of the nearest sample from the learning set.

In the case of the use of chromaticy coordinates (CC), a
chromaticity diagram was also built. Thus, the region la-
belling was done using both classification methods: the near-
est neighbour and the mapping over the regions defined in
the chromaticity diagram.

Finally, the results obtained from the application of the
normalized chromaticity diagram were compared to the re-
sults obtained by the application of the nearest neighbour
rule over the normalized chromaticity coordinates (NCO).

The results obtained by the different methods are shown
on table (1). As can be seen on the table, the results obtained
by our method considerably improve previous ones based on
RGB and chromaticity coordinates (CC) methods. In the left
column, that corresponds to the nearest neighbour strategy, it
can be noticed that the use of normalized chromaticity coor-
dinates performs more than 10% better than chromaticity co-

ordinates and more than 30% better than RGB nearest neigh-
bour. The normalized chromaticity coordinates also improve
very much the results obtained mapping over a chromaticity
diagram based only on chromaticity coordinates (right col-
umn of the table). Finally, it can be seen that our colour nam-
ing algorithm also improves the nearest neighbour classifica-
tion in the normalized chromaticity coordinates space (18%
approximately) achieving a correct naming rate of 83.33% .

Nearest Chromaticity
Neighbour Diagram
RGB 34.24%
CC 54.54% 63.33%
NCC | 6545% 83.33%

Table 1: Results of colour naming experiments for 330
regions. The nearest neighbour strategy assigned the label
of the learning sample that had minimum euclidean distance
to the average values of the test sample. The ri ght column
of the table correspond to the mapping of the average values
of the test region over the Chromaticity Diagram in the
colour space of choice

8 Conclusions and future work

The contribution of this work is twofold. The first one is
to give a brief introduction and a review about colour per-
ception. The second one is to propose a new computational
method for colour naming that is tested on a real application.

Firstly, we explain colour as a visual cue and we give two
points of view: biological and physical. We conclude this
first review with the tricromatic mathematical formulation
of colour. Secondly, we show a brief review of techniques
to deal with colour in computer vision. We have grouped
the different approaches in three different groups of tech-
niques: colour constancy methods, invariant measurements
and normalization techniques. All of them try to solve the
variability of colour representations in real problems, trying
to implement the chromacity adaptation performed by the
human visual system.

The second part of the paper is devoted to show the ap-
plication of a normalization technique to solve the colour
naming visual task. The goal of this task is to map an image
region to a colour label. The proposed algorithm is based
on two steps: learning and naming. The learning step con-
structs a normalized chromaticity diagram from a set of nor-
malized images and the naming step maps the normalized
coordinates to a label of the constructed diagram. In order to
apply this algorithm, several constraints have to be assumed:
linear and narrowband sensors, non-radical illuminant vari-
ations and a permanent background in the scene. Assum-
ing all this conditions the algorithm has been applied to a
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real system for a surveillance problem and some results have
been showed.

As a future work, all the experiments should be tested on a
larger set of images. We also have to validate the robustness
of the method by testing the range of condition variations
that allows to correctly work with a given normalized chro-
maticity diagram. Finally, we should make a more suitable
comparison with other colour naming methods.
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