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AbstractIn this paper we address the problem of color texture classi�cation and presentresults on two practical problems. The central idea is to combine color and textureinformation through the multiresolution decomposition of each channel in order to takeas classi�cation vector the energies and cross correlations of the coe�cient images.However, this simple approach can be materialized in many di�erent ways, as a severaldecisions have to be taken, each one allowing multiple choices : the multiresolutiondecomposition scheme (for instance, Mallat's, �a trous, wavelet packets), the subspacesbase family (and within it, which speci�c base), number of decomposition levels, spacefor color representation and �nally, the classi�cation features to be computed fromthe decomposition. Instead of simply trying some possibilities and take the best one,we have assessed a very large number of combinations, trying to �nd out which arethe important and the non{relevant issues with regard the classi�er performance. Inaddition, we propose three image models as a framework for color texture classi�cation,depending on how texture is combined with color. This allows us not only to initiallyselect the appropriate types of features but also to reduce the number of classi�cationparameters so that the training set does not need to be large. This framework hasbeen successfully applied to two speci�c machine vision problems, namely, the sortingof ceramic tiles into perceptually homogeneous classes and the recognition of metalizedpaints for car re�nishing.Keywords: color, texture, wavelets, recognition, sorting, ceramic tile, re�nishing,paint.1 IntroductionIn this work we present a study on the wavelet decomposition and classi�cation of colortextures. It was prompted to solve an industrial machine vision problem, namely, theon{line sorting of polished ceramic tiles. Later, we approached another application, paintidenti�cation from microscopy images for car re�nishing. We will see that the solution tothe �rst application �ts very well also to the second one.From a computer vision point of view, we are addressing in both cases a problem ofcolor texture representation and classi�cation. The objective is to devise a numerical repre-sentation of images that captures both the color and texture features. In the present case,we are interested in the bene�ts of this representation for classi�cation purposes, but it mayalso be useful in other contexts like color texture synthesis and database image indexing.The whole application process consists of the following steps, being the slanted itemsthose directly associated with the method of color texture analysis we propose in this article :� image acquisition� change of color space representation� multiresolution decomposition� feature extraction� supervised classi�cationWe will focus on the justi�cation and performance of di�erent choices for color represen-tation spaces and multiresolution decomposition schemes. Our aim is to assess all possiblecombinations in terms of minimum classi�cation error over a relatively large set of samples.Furthermore, we want to provide a sound explanation in terms of why each choice achieves2



its result. This is done in the context of three color texture analysis models we propose,depending on how the image content within scales and channels is related.This paper is organized as follows. Section 2 reviews previous work on joint compu-tational representations of color and texture visual cues, including wavelet transforms ofmultichannel images. Next section describes the planned experiments, namely, the choicesfor color space, wavelet transform scheme and the classi�cation features derived from them,which we are going to combine and assess. In section 4 we introduce the problem of ceramictile classi�cation and the main results obtained. Section 5 brie
y deals with the same issuesfor the second case study of paint recognition. Finally, section 6 contains the conclusionsand future work.2 Related workColor texture representation is a current topic in computer vision. Although both areproperties of a surface, these two visual cues have been usually studied separately. Onereason is that while color is a point feature given by the value of a pixel in several bands orchannels, texture has been modeled as a spatial relationship of the point with its neighbourswithin each channel. An excellent review of approaches used in computer vision to deal withthe texture representation problem can be found in [1], whereas and introduction to colorrepresentation is given in [2].The study of color texture representations has received increasing attention in the lastyears. The objective of many researchers is to �nd co{joint representations of spatial andchromatic information which capture the spatial dependence (in particular, correlation)within and among spectral bands [3, 4, 5]. One of the most frequent approaches is theconstruction of a feature vector mixing grey level texture features and color features [4].Another one is to extend classical texture models, such as Markov Random �elds and theautocorrelation function, in order to deal with multichannel images [5, 6]. Other works, like[7], convert RGB values into a single code from which texture measurements are computedas if it were a grey scale image. Spatio{chromatic representations are computed in [3, 8]over the smoothed Laplacian of the image. Other works have been in
uenced by knownperceptual mechanisms of the human visual system like Gabor �lters [9, 11].In parallel, multiresolution texture analysis has come to age thanks to the setting of asound theoretical basis for wavelet transforms and �lter banks. Recent works on textureincorporate color as and additional image dimension [9, 12, 13]. This has been applied toanalysis but also to synthesis [14, 15] and texture classi�cation [9, 11].A color texture analysis based on a multiresolution decomposition representation nor-mally involves to make up two decisions: the selection of the decomposition scheme toperform the texture analysis and the de�nition of a space to represent color. A generalframework for image decomposition is to apply a bank of �lters. Gabor �lter banks andwavelet transforms are two common approaches found in the literature.The simplest way to extend them to cope with color images is to �lter or transform eachchannel (RGB for instance) independently. However, some authors propose to representcolor in other spaces such as the opponent color space [9, 11], inspired in biological evidencesof the human visual system. Both works start from similar color representations, followedby di�erent texture analysis methods. We are going to devote some attention to them, as3



they are closely related to our study.The �rst one [9] uses the orthogonal wavelet decomposition and calculates the energy,eki , of each detail level and the cross terms between di�erent channels at the same detaillevel, ckli : eki = Z (dki (u))2du (1)ckli = Z dki (u)dli(u)du ; (2)where u denotes spatial coordinates, i the decomposition level, k and l are channel indexes.Thus, dki is the detail at level i of the channel k. In this speci�c case, d is an image ofdetail coe�cients of a orthogonal wavelet decomposition, but it can be seen also as one ofthe outputs of a �lter bank.The second work [11] uses a set of Gabor �lters where the response at di�erent levels andchannels is analysed. A biological model is implicit in this scheme due to the use of Gabor�lters and to the extraction of the information between channels following the opponentcolor model. Energies at each level of every channel (terms eki of equation (1) for all i andk) are calculated, but also the energies associated to the inhibition between channels atdi�erent levels Iklij = Z (dki (u)� dlj(u))2du ; (3)where dki are now the responses of a Gabor �lter bank. If we expand the inhibition termsof equation (3) we obtain the energies eki , elj and a cross term that could be expressedas �2cklij , using the notation of equation (2). Therefore, both papers are using a similarrepresentation.To end this review, we want to mention a sound comparative study on the performanceof texture classi�cation algorithms by Randen and Hus�y [10]. Like us, they want toassess combinations of wavelet decompositions and features, including additional �lter bankschemes. However they test them only on graylevel images. But the main shortcoming oftheir study with regard ours is that they work with clearly distinct textures, that is, a subsetof the Brodatz, Meastex and Vistex collections. Conversly, we are trying to di�erentiateamong textures much more visually similar, as they come from the same industrial process(at least in the tiles case), this being a much tougher problem, as real problems usually are.There are a few previous works to be considered in the speci�c subject of tile inspection.Some research e�ort has been devoted to the detection of other kinds of defects like cracksand spots. Only in [16, 17] the same problem of tile color texture classi�cation is addressed.The authors try to solve it taking as features only statistical measurements on the colorhistogram. Therefore, results are poor in the event of overall similar color but di�erenttextural aspect, as it happens in our samples. Better results were obtained by some authorsof the present paper by performing a color segmentation prior to an analysis of blob features[18]. 4



3 Multiresolution color texture classi�cation3.1 Color spacesIt is a common practice to use color representation that try to decorrelate information acrosschannels, thus reducing the number of meaningful classi�cation features. However, we willconsider other choices, such as conversion from color to intensity and no transformation atall, in order to compare them with the decorrelation transforms. Therefore, the envisagedcolor spaces/transforms are:C.a Color to grey level conversion by simple averaging of the R, G and B channels. Hence,only intensity is taken into account. This would make sense in images where textureis the only relevant feature for classi�cation.C.b Raw RGB values. That is, no transformation is applied to the image provided by thecamera and frame grabber. In many applications this is su�cient to introduce thecolor information and classify successfully.C.c Generic Karhunen{Lo�eve transform. This is obtained through the base that best decor-relates the spectral information of a large set of color images. According to [9], it isgiven by the following �xed linear transform:264 0:3 0:3 0:30:5 0:0 �0:5�0:5 1:0 �0:5 375264 R(x; y)G(x; y)B(x; y) 375 : (4)It does not decorrelate spatially but somehow gets three new channels weighting eachone by its real contribution when describing the input data with the new base.C.d Speci�c Karhunen{Lo�eve transform. Now, it is sought the base which achieves themaximum spectral decorrelation but over the training set of the application, In ourcase, it is the set of images for each class and model.To �x ideas and for the sake of simplicity, we will illustrate concepts of this section with�gures of the tile problem. Figure 1 shows the former four transforms for a 128�128 region.3.2 Decomposition scheme and basesThe decomposition scheme is \application dependent". Thus, for time critical applications,an orthogonal scheme like wavelets or wavelet packets with a reduced number of levels isgenerally preferred. Conversely, in images with high frequency content in the middle zoneof the spectrum, a wavelet packet scheme should be better a priori because it allows tofocus the analysis on the levels where the relevant information is. Likewise, in images whichexhibit a regular behaviour and without a privileged direction, an isotropic and symmetricdecomposition makes more sense, but then it must be non{orthogonal and redundant likethe �a trous one. Therefore, the following four wavelet transforms have been considered :D.a Multiresolution analysis with Mallat's algorithm [12].5



Figure 1: From top to bottom: grey level, RGB, general and speci�c Karhunen{L�oevetransform. Images have been linearly contrast enhanced for the sake of visualization.D.b �A trous algorithm [19]. Opposite to D.a and D.c, it is a non{orthogonal and henceredundant transform.D.c Wavelet packets transform [20] using a few �xed tree structure patterns.In addition to the wavelet transform scheme, a suitable base must be selected. There aremany families of bases, each having di�erent properties like symmetry, orthogonality andregularity (related to the number of vanishing moments). This adds still a new dimensionto the search space in which we want to minimize the classi�cation error. In order to cutdown the number of tests, we have �xed the base family for each scheme after a numberof trials which we will not report here. Accordingly, Mallat's multiresolution analysis andwavelet packets transform are performed with Daubechies orthogonal bases and the �a trousdecomposition uses a �rst order B{spline base. Figure 2 summarizes the decompositionscheme followed by each transform, and �gure 3 shows an example over the R channel of atile.3.3 Feature extractionOnce the decomposition has been performed, we need to compute a vector of feature mea-sures. In the literature of wavelet texture analysis two types of features are mostly used:energy and entropy. They are applied to the coe�cients of the approximation and details ateach level, though in some works cross energies (correlation signatures in our terminology)of details at di�erent levels are also computed. Joint entropy [21] of couples of details orapproximations at di�erent levels and/or channels could also be computed and assessed.In our application both had a similar performance. Actually, energy attained less than1% improvement on the classi�cation error over entropy, at least when features were re-6



Figure 2: Decomposition schemes of a 1D signal f into detail and approximation coe�cientsfor the Mallat's, �a trous and a wavelet packet transforms.stricted to be the energies of details and approximation for each channel (terms eki , seebellow). For this reason we have restricted our study to energy related features.The terms we will compute for the analysis stage are the energy and the cross correlationbetween levels and channels. We call all of them correlation signatures like in [9] :cklij = Z dki (u)dlj(u)du : (5)Note that cklij include the energy terms because eki = ckkii .The number of features provided by the former three decompositions grows rapidly asthe number of levels increases. For instance, a three{levels Mallat's wavelet transform of aRGB image gives rise to 30 images (1 approximation plus 29 detail images) on which 306correlation signatures of images of the same size are possible. In a well devised supervisedclassi�er, when the number of discriminant features increases, the performance is enhanced.However, if this number is too large with regard the size of the training set, the classi�erjust learns to succeed over this set but it is not able to generalize. Therefore, we shouldkeep small the length of the feature vector, namely, the number of signature terms. For thisreason, we propose to test the following choices, illustrated in �gure 4 :F.a Compute only the energy terms: ckkii 8i; 8k. This is the most frequent choice in theliterature.F.b Calculate all correlation signatures between levels but only within the same channel :ckkij 8i; j; 8k .F.c Calculate all correlation signatures between channels but only within the same level :cklii 8i; 8k; l . This is the approach taken in [9].7



a b

c dFigure 3: (a) 256�256 portion of a tile red channel. (b) Zoom over a fourth level ofMallat's wavelet transform. A logarithm transformation has been applied for the sake ofvisualization. (c) Approximation and detail levels of the �a trous decomposition. All of themhave been contrast maximized separately. (d) Zoom of one of the possible two level waveletpacket decompositions (leafs of the tree at the second level).F.d Collect all possible correlation signatures between channels and levels : cklij 8i; j;8k; l.In order to select relevant features, we take into account the former observation ofsection 2 which related some correlation signatures with the inhibition energies of theopponent color model.
Mallat's and wavelet packets transforms in which the decomposition tree has di�erentlevels can not be combined with options F.b end F.d. The reason is that coe�cient imagesat di�erent detail levels have di�erent size due to decimation, thus being not possible tocross{correlate them. 8
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Figure 4: Features are selected among four types of correlation signatures.3.4 ModelsAs we stated before, our approach to color texture classi�cation is to �rst select a suit-able space for color representation, a multiresolution decomposition scheme of the imagerepresented in this space, and �nally a set of discriminant features derived from this de-composition. However, it does not make sense to try every possible combination of choicesfor the three former items. Instead, we must select them according to and image modelwhich explains how texture is related or mixed with color. We propose the following threemodels:M.a : Images resulting from the addition of a grey level texture plus a uniform backgroundcolor. Thus, only energy terms F.a from approximation and detail coe�cients atdi�erent levels and F.b make sense. Furthermore, as this model in fact assumes asame texture for each channel, the former features must be computed just over one ofthe channels or the intensity image (mean of R, G and B).M.b : Now, we assume that each channel contributes with a di�erent texture to the �nalvisual aspect of the image. But we further suppose that these textures are staticallyindependent. Therefore, only F.a and F.b, this time over each channel, are candidatesto be discriminant features with regard to a classi�cation task. This is the model usedin [15] for texture synthesis.M.c : Conversely to M.b, we suppose now that textures along each channel are dependent,and in particular linearly dependent. Thus, besides F.a and F.b, correlation signa-tures between approximation or detail coe�cients of di�erent levels and channels, F.cand F.d, must be taken into account as potentially discriminant features.9



3.5 Classi�cation methodThe classi�cation method is a non{parametric discriminant analysis. In order to classifynew samples we need a set of prototypes representing each possible class. Afterwards, thedistance between the sample and each class can be calculated and the most similar classassigned. Given that classes are not known a priori, we need some method to learn theprototypes from a set of samples.One of the methods that �ts our constraints is that of Fisher discriminant functions,because, without any a priori knowledge of data, it is able to select the best representationmaximizing the ratio between the inter{class covariance and the intra{class covariance [22].A linear transform W , is applied to the feature vector x of a particular image obtaining anew representation, y = W tx, in a space where the discriminant capacity is maximizedFrom an image of a tile, we extract its feature vector, x, and we assign it to class j ifjW tx�W t�jj < jW tx�W t�ij 8 i 6= j ;where �i are the prototypes of the classes. Further details on the classi�er can be found in[18]4 Sorting of ceramic tiles4.1 The problemTile manufacturing needs of pigments and clay which are mixed, melted, sprayed on to thetile substratum, and �nally baked. Unavoidable variations in the pigments color, temper-ature, humidity and pressure conditions provoke subtle variations of the tile aspect whentiles are placed on the 
oor, one next to other. These visual changes are due to small di�er-ences in color and texture, and are seen as defects by customers. A system was thus neededto automatically sort tiles from a given model into perceptually homogeneous classes. Atpresent, several trained workers at the end of the production line sort the tiles into per-ceptually homogeneous stacks. In each production line only a model of tiles is produced.Thus, classi�cation must be done among classes of each model and not among models. Asit is a tedious, time{consuming and subjective task, an automated system is needed.We have built a system prototype to acquire and analyze images from tiles. Tile imagesare acquired with a three CCD digital line scan camera which yields 10 bits per channel.This allows us to distinguish color detailsinvisible to the human eye, though a very stablelighting is required. We have designed a line light system which integrates several halogensources and optical �ber light guides. In addition, we adapt the spectral content of the lightto the camera CCD sensitivity by placing a set of color �lters in front of the lens. Tilesmove on a conveyor{belt with controlled speed under the linear camera, and this allows usto adjust the vertical resolution of the images to be the same as in the horizontal direction.The horizontal resolution is 5 pixels/mm, and it is given by the camera height above theconveyor belt and the lens �xed focal length.Tile samples used in this study have been drawn from three di�erent models which wewill refer as A, B and C, (�gure 5). Each model has a dominant color (A brown, B greenand C blue) and spans into eight classes, according to the trained workers criteria. Thus,10



each particular tile of a model must be labelled as belonging to a certain class. We havebeen provided a stack of 15 tiles per model, and for each one we have captured an image ofthe upper and lower half at a resolution of 512�512 pixels.4.2 Test imagesWe have been provided 15 tiles per class, for each of the 8 classes of the three models,summing up 360 tiles. From each class of each model, he have reserved 5 tiles for learningand used the 10 remaining tiles for testing. We have captured two 512�512 RGB imagesfor each tile, corresponding to the middle part of the upper and lower half. Thus, one testrun means to �nd out which is the class of 480 images, given their models. In order tosummarize the results, we will focus just on two �gures : the total percentage of successand the percentage per model.4.3 Simple featuresBefore comparing di�erent schemes of multiresolution decomposition, space colors and typesof features, we have �rst assessed the performance of two simple measures which do notinvolve any decomposition at all: the energy and the combination of mean and variance foreach channel. They should provide a reference against which all subsequent more complexmethods were to be compared, in order to better assess their real performance. Quitesurprisingly, they reached high classi�cation rates (table 1), despite of the fact that thecolor and textural content of classes are visually hard to discern, as shown in �gure 5.However, they were not yet su�cient. ModelFeature A B C Totalenergy 73.1% 71.9% 75.0% 73.8%mean and variance 94.4% 79.4% 87.5% 87.1%Table 1: Percentage of right classi�cation for simple measures. 1% of total correspondsapproximately to �ve images and 0.6% within a model to one image.A further test was carried out in order to make sure that our planned tests were worththe e�ort. We normalized the images to have all of them zero mean and variance 1.0 andnext we decomposed each channel with the �a trous algorithm, with 3 levels and �rst orderB{Spline as base, and with the Mallat's scheme with one level and Daubechies 4 as base.Results reported on table 2 showed that these two chosen decomposition methods alreadygot better results, though they were not conclusive.ModelScheme A B C Total�a trous 91.9% 82.5% 74.4% 82.9%Mallat 91.9% 81.9% 83.8% 85.9%Table 2: Percentage of right classi�cation for images with zero mean and variance 1.
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Figure 5: One sample of each class for tile models A, B and C.
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Figure 6: Three level �a trous decomposition for one tile of each model. First row: a portionof 256�256 pixels of the image. Second row: approximation and details at three levels.
13



4.4 ResultsA huge number of tests are possible because the type of features, the decomposition schemeand the color space must be selected. Let's �x the type of feature to the simplest one, F.a,in order to explore the other factors. With regard to the second item, a number of basefamilies are possible, and within each family, there are yet many possible selectable basesand decomposition levels. We have limited the number of tests by constraining the familyof each scheme and the number of levels as listed in table 3, and then looking for the bestparticular base.Actually, other families were tried like symlets and coi
ets but they attained similarresults to those selected. Table 4 shows the worst and best case for each scheme amongall combinations of base and number of levels of table 3. Features are just the vectors ofenergies of the approximation and details of each channel, even for model A. Now, if weobserve that the �a trous scheme achieves the best global result (91.9 %), even though it isclosely followed by other two schemes at a distance of 1.3%. Actually, this means just 7more images wrongly classi�ed over a total of 480. In order to prune the search for the bestmethod, we will stick to this scheme from now on.The next issue is to choose the classi�cation features. Now, we are going to take advan-tage of the former three generic models of color textures. Images of tile model A follow quiteclosely M.a conditions. This can be seen in �gure 6, which shows the �a trous decompositionof three levels with �rst order B{Spline for a tile of each model. This redundant decom-position has the remarkable property of representing an image as the pointwise sum of theapproximation and the detail images at di�erent levels. We can appreciate how for the �rsttile, the approximation is a rather uniform ochre background to which mostly monochromedetails must be superimposed in order to recover the original image. These detail imagesalone would give rise to almost all of the textural component of the original image if we haddecomposed two or three more levels.Tile models B and C are closer to M.b or M.c than to M.a, as can be deduced fromtheir slightly more colored detail images and less uniform approximation. This can be moreclearly appreciated in the image of model C. Therefore, all types of features F.a to F.d areenvisageable. On one hand, however, it is not possible to compute correlation signaturesbetween images of di�erent size, as would be the cases of details/approximation imagesat di�erent levels in the Mallat's multiresolution analysis and wavelet packets. On theother hand, F.d is the set of all possible correlation signatures between channels and levels,which, for three channels and a modest number of levels, means a huge number of features,outnumbering the images of the training set. For these two reasons, we have decided todiscard features of type F.d and to take into account just F.a, F.b and F.c for models Band C. This will improve the best scores of table 4, whose features were limited to F.a forthe three tile models. Best results are obtained for 3 levels and �rst order B{Spline, asillustrates table 5.All previous tests were performed over the RGB representation. The last step was tocheck whether other spaces would further reduce the classi�cation error of the �a trous, 3levels, �rst order B{Spline and most suitable features for each tile model. Thus, the two KLtransforms of section 3.1 , generic and speci�c, were applied before decomposing. Results,however, did not improve signi�cantly, see table 5.
14



Scheme family of bases bases levels�a trous B{Spline 0-th, 1-st, 2nd order 1 { 7Mallat Daubechies D2 { D20 1 { 7Wavelet packets Daubechies D2 { D20 1 { 2Table 3: The three di�erent decomposition schemes used with family bases and number oflevels studied.
Worst/Best global resultsScheme levels base number offeatures A B C global�a trous 7 B1 24 92.5% 80.6% 85.6% 86.2%3 B1 12 95.6% 84.4% 95.6% 91.9%Mallat multiresolution 5 D8 48 95.6% 76.9% 82.5% 85.0%analysis 2 D12 21 96.3% 83.1% 92.5% 90.6%Wavelet 2(1) D2 48 95.0% 71.9% 82.5% 83.1%packets 2(2) D6 60 93.1% 75.0% 90.6% 86.2%Table 4: Results of the decomposition schemes tests. Features are energies of approximationand detail coe�cients (F.a). B1: �rst order B{Spline, D: Daubechies. (1) only leaves of thewavelet packet tree are taken into account, (2) all tree nodes.

Features A B CF.a, F.b 98.1%(1) 84.4% 83.1%F.a, F.b, F.c 95.6% 87.5%(2) 95.0%(2)C. space A B Cgeneric KL 98.1% 88.1% 93.3%speci�c KL 98.1% 86.9% 95.0%Table 5: Results of correct classi�cation with di�erent set of features and the same featureswith a color space transform applied to data. (1) only over channel R, having these only 9features. (2) 24 features.
15



5 Paint recognitionThe second problem we have addressed is the reverse engineering of metalized paints. Theyare a mix of one base and several e�ect pigments. The �rst one provides a backgroundcolor whereas e�ect pigments (usually no more than three) produce changes in color andre
exion depending on the viewing angle. The goal is to �nd out a combination of baseand e�ect pigments that best matches a given sample part, even though its pigments aredi�erent from those available. To our knowledge, this is still an open problem for the paintindustry due to its complexity. We believe that it can be solved by combining the outcomesof two kinds of comparisons : the spectral responses of the sample under di�erent lightingand viewing angles, and the microscopy images showing the pigments texture, both withregart the sample and the database of pigments. As this is an on going project, we will onlyreport on the second part, which is again a texture recognition problem. However, it has aninterest on its own, because there is a widespread application or color texture recognition,car re�nishing.Test images have been taken from a Ford paints card, which was readily available. Aset of 14 samples (target classes) were selected, all of them appearing as di�erent greyishcolors. For each one, �ve images 768�576 of non{overlaping �elds were acquired with aZeiss Olympus microscope, a 3 CCDs Sony camera and a �10 magni�cation lens. Figure5 shows an image of each class. Each one was divided into six disjoint 256�256 images inorder to increase the number of samples. Hence, we had 30 images per class, 12 of them fortraining and the rest for testing.Which features should we use ? Again, this depends on the assumed image model.Some �a trous decompositions quickly show that texture is uncorrelated to color, that is,images can be thought as the addition of a background color to a grey level texture, whichis our M.a model. Therefore, only F.a features will be computed. In addition, when weexamine �gure 5 we realize that colors are similar and, besides texture, the main di�erenceamong classes is their contrast and brightness. Though all images were taken under constantlighting conditions, we want the classi�er to be independent of it, that is, to rely only onthe particles texture. For this reason, we have computed the intensity of each color imageand normalized it to zero mean and unit variance.
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1 2 3 4 5
6 7 8 9
10 11 12 13 14Figure 7: One sample image per class.
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1�!2 2�!1 10�!1
12�!14 14�!12
5�!6 6�!5Figure 8: Examples of confusion. Numbers below are the actual and assigned class.
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The decomposition scheme, number of levels and base are those most successful in theformer application, that is, �a trous, 3 and B1 respectively. Table 6 shows the classi�cationresults. Whats more remakable is that a high recognition rate is achieved with only fourparameters (energies of details at three levels and approximation), given the high visualsimilarity of the textures. In addition, errors happen when classes are harder to discern,even by a human observer (�gure 8).Actual 2nd mostclass Assigned similar 3rd 4th1 2 (33.3%) 1 (27.8%) 10 (22.2%) 7 (16.7%)2 2 (83.3%) 1 (11.1%) 10 (5.6%)3 3 (77.8%) 4 (16.7%) 2 (5.6%)4 4 (72.2%) 5 (27.8%)5 5 (66.7%) 6 (33.3%)6 6 (88.9%) 4 (11.1%)7 7 (100%)8 8 (94.4%) 14 (5.6%)9 9 (94.4%) 13 (5.6%)10 10 (83.3%) 1 (11.1%) 2 (5.6%)11 11 (100%)12 12 (100%)13 13 (94.4%) 9 (5.6%)14 14 (66.7%) 12 (33.3%)Table 6: Paint recognition results over 18 images per class. n (x%) means that x% of the18 tested images of that class were assigned to class n. One image over 18 is 5.6%6 ConclusionsWe have addressed a problem of color texture classi�cation through multiresolution decom-position techniques. Our aim was to �nd an optimal combination of color representation,decomposition scheme plus base and number of levels, and discriminant features. Throughthe search strategy described in the results section we have arrived to the conclusion that,for the speci�c images of our study, only the decomposition scheme substantially in
uencesthe �nal result. The family of bases and the speci�c base within it do not play a signi�cantrole, as all tests varying them get similar percentages of success. Nevertheless, we have beenable to tune them in order to slightly (1% or 2%) reduce the classi�cation error. Likewise,color spaces do not achieve a noticeable improvement.From a more theoretical point of view, we have proposed three image models accordingto which several types of spatio{chromatic features are or not meaningful. These modelsrefer to how texture is embedded into color and how texture in each channel relates totexture of the other ones. In this way, given images following one of such models, we knowthat only certain features computed from the multiresolution decomposition should be takeninto account. This idea has been supported by actual results showing that selecting theright features achieves the smallest classi�cation error.Future work will address the assessment of features of type F.d as well as other mea-sures of dependence between the images of the decomposition. In particular, the mutualinformation measure as an extension to entropy is being examined.19
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