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Towards a Texture Representation Database
by

Anna Salvatella and Maria Vanrell

Abstract

In this paper we propose a texture description method to build a wide representation dataset that allows
validating the performance of di�erent computational texture representations. Some psychophysical
data has been collected in previous works, where a set of textures have been observed and described

by a set of subjects, all this experiments have been done in closed labs and on di�erent sets of image
textures. Due to the lack of a common accepted texture representation, most of the experiments have
been based on similarity judgements between textures or on quanti�cation of high-level features. The
former approach is usually closed to a restricted set of images and the latter is subject to certain degree
of subjectivity and metamerism. In this paper we propose a blob-based representation that intends
to put the basis to do open psychophysical experiments on texture images with no constraints on the
set of selected images neither on the dependence on high level linguistic terms. Following a blob-based
approach we demonstrate the possibility to derive computational representations to be easily tested with
the collected data.
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1 Introduction

Most of the papers on texture perception and representation refer to the lack of a standard representation
space. In computer vision a great deal of di�erent representations have been developed. They are based
on di�erent mathematical approaches trying to de�ne a general texture representation [8, 13, 39] where
the approaches based on Gabor �ltering seems to become the most successful in terms of generality
[18, 26]. In psychophysics much work has been focused on trying to understand how the perception of
texture occurs from di�erent points of views, preattentively [19, 22, 2], and attentively [14, 30, 16, 17].

This problem is emphasized when texture is compared to colour, since both share the fact of being
surface properties. While the latter is physically modelled, psychophysically measured and completely
tabulated on standard spaces that can be appointed by anyone [38], the former is lacking of all of them.
Colour and texture of a surface are physically provided by two factors, the spectral power distribution
of the incident light and the spectral re�ectance of the surface. The position and light sensitivity of the
observer add some important properties.

In this paper we will only refer to the problem of representation of image texture, we will consider
as di�erent textures those images that preattentively could be discriminated by human perception. We
will regard as di�erent textures those images corresponding to the same surface where any of the above
parameters, which contribute on image formation, have been changed. A relevant work is being done in
characterising re�ectance of texture surfaces [9].

This work is a proposal of a texture representation system based on the objective concepts of blob
and emergent pattern. It provides us with two basic advantages. Firstly, to give the opportunity to

build a consistent dataset of psychophysical data on how texture is perceived by a large number of
di�erent individuals, since it can provide a large perceptual space for which we can be able to �nd a 2nd

order isomorphism in the Edelman's sense [10], it is commonly done in psychophysical works [14, 16]
where perceptual spaces are correlated with computational spaces [36]. Secondly, to establish a guideline
on how computational texture representations should be built in order to directly match with all the
collected data.

To this end, in this paper we propose an experiment to be realised on a web site1 devoted to collect all
the data about the questions we propose in this paper on how an image texture is perceived. We propose
to do the experiment using a web page because it will allow to collect a large amount of experiments on
di�erent subjects and on wide sets of images since it can remain open for a long time and available from
anywhere.

The paper has been organized as follows. Firstly we give an overview on previous experimentation
done in psychophysics related to texture representation problem. Secondly, we give a brief review on
how the evaluation of texture representation has been done in computer vision. Thirdly, we give some
de�nitions as the basis to introduce our proposal of a representation based on the terms of blob and
emergent pattern. In the next section we explain how the experiment will be posed and controlled.
Finally, we suggest a computational representation to demonstrate that is feasible to automatically
extract all the data collected with the proposed experiment. As a �nal remark we want to note that
all this work has to be understood in the frame of a thesis project in its beginning and from here our
interest in making evident its proposal character, since a lot of details still remain to be closed.

2 Previous works

In computer vision, the e�ort on texture research has been mainly directed to develop mathematical
approaches and algorithms that decompose and measure texture properties in order to perform speci�c
tasks of classi�cation or segmentation [8, 13, 39]. Some other works have focused on de�ning computa-
tional models pursuing a behaviour that agrees with physiological mechanisms of early vision [25, 4, 32]
and match psychophysical data.

1This web site is still under construction, please contact to correspondence author to get the �nal address.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Examples of textures formed by simple blobs and their emergent patterns.

In psychophysics, there are two main ways to behave when the texture perception problem is studied,
an excellent review work can be found in [3]. The di�erence between them is derived from the experi-
mental techniques used to get the empirical data, whereas some works are based on the phenomenon of
preattentive segregation of two overlapped textures [20, 1] , others are based on the analysis of similarity
judgements between pairs of textures [14, 31, 16, 17] that is based on an attentive process.

Results from both types of approaches are conditioned by many factors that make arise some ques-
tions. Firstly, how the selected set or pairs of images used can modify the performance measured by the
experiment?, similar experiments on colour naming are exclusively addressed to analyse the in�uence on
the results from the set of selected stimulus [6, 33]. Secondly, how the a priori knowledge on the image
scene of the subjects can a�ect similarity judgements between natural images used in some experiments?
as it is done in [31, 34]. A recent work on natural images [17] concludes with the context-dependency of
the experiments based on an attentive similarity judgement.

To avoid the last problem some authors have based their experiments on synthetic images [14, 15].
From a reasonable point of view it seems quite evident that it is impossible to do an algorithm able to
generate any possible texture image. If it was possible, it would allow to build the general set of texture
images as it has been done in colour research, where it is easy to synthesise all the coloured lights within
the visible spectrum interval.

Despite the limitations introduced by the experimental techniques, important results have arisen from
psychophysical research on texture perception, where two di�erent approaches are confronted as being
the basis of a visual internal representation of stimuli. On one hand, the feature extraction process has
received a hard support from the Julesz's texton theory [20, 21], that concludes texture discrimination
is due to di�erences on �rst order statistics of textons, which have been de�ned as the image blobs and
their attributes. On the other hand, a global spatial frequency analysis seems to be indispensable to be
able to capture the segregation of textures due to patterns emerging from the arrangement of the image
blobs, as it is argued in [2, 16]. In �gure 1 we can see both cases, that is, texture di�erences due to
di�erences on blob attributes, as is the contrast in images (a) and (b), and di�erences due to di�erences
on attributes of emergent patterns, as is the orientation in images (b) and (c).

In the present work we clearly advocate for a combination of both processes as the best way to
understand texture segregation and representation. It is also done in most of the computational works
where representation is computed by convolving the image by a bank of frequency-selective �lters [18,
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25, 5]. This multi-scale �ltering allows performing both processes, that is, tuning in image blobs or in
emergent patterns depending on the scale of the �lter used.

3 Texture representation evaluation

As we have previously introduced, a common approach in computer vision is to give a texture represen-
tation based on the energy computation of the outputs of a bank of �lters. Following this approach or
any other else where the output is a numerical vector representing texture properties, the evaluation has
been usually done by computing an index of retrieval performance [26, 12] or a classi�cation error rate
[28, 29].

The accuracy on texture image retrieval is usually evaluated on standard texture database as the Vis-
Tex [35] or the Brodatz's album [7]. Homogeneous textured images are divided into N small subimages,
creating a large image set. A perfect retrieval is done when the similarity measurement between the
entire image database gives the N higher values for those subimages corresponding to the same query
image. Then, a usual performance measurement is given by the average number of subimages belonging
to the same query image in the �rst N most similar. A classi�cation error rate can be computed in
a similar way when a classi�er is used to associate each subimage to an image class. In both cases,
validation informs about the performance of a representation in �nding equal textures, but it does not
inform on how good it is in giving automatic similarity judgements.

A less common method to validate a computational texture representation has been to identify
relevant dimensions on a low-dimensional texture space, for which a meaningful interpretation can be

given from a perceptual point of view. Therefore, a computational representation is derived by joining
statistical measurements for each dimension. Although it was done in last seventies, the work presented
by Tamura et al. in [34] is still current from a methodological point of view and of great value from the
performance evaluation issue. They selected a subset of statistical measurements on textures properties

based on good correlation with judgements done by human participants in a experiment. It is based on
judgements of similarity of some individuals and as we already mentioned before, they su�er from the
context-dependency of the experiments based on an attentive perception process and from the constraint
imposed by a closed set of images.

Other works, have validated the set of selected features by directly using those which correlates with
high-level features associated to a experimentally deduced perceptual space, as is the case of Picard et
al in [11], where measurements are selected following the dimensions identi�ed by Rao et al. in [31].

Finally, in a more recent work by Manjunath et al [40], a validation is done on �ve individuals who are
asked to quantify �ve aspects of a texture, one for texture structure, two for predominant directionalities
and two for predominant scales. This data is correlated with the data of their algorithm that provides
a �ve-dimensional texture representation derived from the analysis of the output of a Gabor �lter bank
on the input image. From our point of view, the most important contributions of this work are two,
�rstly, they propose a low-dimensional space where dimensions are associated to quite objective image
properties, and secondly, they propose psychophysical experimentation for each dimension.

The above two statements are the starting point for the proposal of a psychophysical experiment based
on answering concrete questions about objective properties of the image. We seek to insert objective
properties by building a texture de�nition based on image blobs and emergent patterns. Before doing
the experiment, individuals will have to familiarize themselves with these two concepts.

With our proposal we try to avoid some metamers2, that could be derived from a �ve-dimensional
representation as the one previously presented, we assume as �rst priority to seek for a representation
that allows to capture any small di�erence between any pair of textures.

For instance, a texture with four predominant directions could become a metamer if we only consider
two dimensions to represent directionality, as the image in �gure 2.(h), a similar case can occur if we

2We have adopted a term from colour science, metamer, to refer to perceptually di�erent image textures but sharing a

common representation.
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(a) Tiles (b) Flowers (c) Textile (d) Marble

(e) Cork (f) Crossings (g) Lace (h) Bricks and fence

Figure 2: Texture images

only consider two predominant scales, we can immediately �nd or synthetically build a new texture with
more than two important scales, as it is shown in �gure 2.(d). We propose to solve metameric problems
by introducing a representation based on the concept of subtextures.

4 Blob-based texture representation approach

The goal of this section is to give a methodology to build texture representations based on the image
blobs. Before giving some basic concepts we want to remark the purpose of combining the two main
conclusions from psychophysical research on texture perception which are summarized in the Julesz's
texton theory [22] and by the evident need of global spatial-frequency analysis to deal with emergent
patterns [2].

Blobs are the basic elements of early visual representations. Although they were earlier de�ned in
computer vision in the Marr's primal sketch [27], subsequently they have been rede�ned by Lindeberg in
[24]. Since the mathematical de�nition is too complex to be explained to non-expert people willing to do
an experiment, we need to give a plain de�nition of the concept of blob as a closed image region whose

pixels share the properties of grey level homogeneity, compactness and convexity, examples of image blobs
are shown in �gure 4.

Di�erent attributes can be associated to image blobs, blobs can be dark or bright in reference to the
predominant image grey level or blob neighbourhood, blob contrast is also an important attribute that is
given by the relationship between the grey levels of the blob and its neighbours. An important attribute
of image blobs is its scale or size that is directly related to the blob area. Some blobs will also present
a wide di�erence between their own principal axes; these will be elongated blobs or bars for which an
orientation attribute will be associated, this will be the orientation of the �rst principal axis. Blobs,
bars and their attributes correlates with an important part of textons introduced by the texton theory.

Next, we need to introduce the image background that is assumed to be those parts of the image that
can not be perceptually considered as independent blobs due to they are perceived as a wide connected

region across the image.
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(a) (a.1) (a.2) (a.3)

(b) (b.1) (b.2) (b.3)

(c) (c.1) (c.2) (c.3)

Figure 3: (a) Synthetic image. (b), (c) Natural images. (x.1) Bright blobs of image x. (x.2) Dark blobs
of image x. (x.3) Background of image x.

In �gure 3 we can see the decomposition of three images in terms of their bright blobs, dark blobs
and background. An ideal case is shown in image 3.(a), formed by perfect bright and dark blobs. Image
3.(b) does not present any bright blob, and image 3.(c) does not have background. In this last case
we can clearly see that blobs represent homogeneous image regions that are meaningless entities for an
attentive perceptual process.

However, blobs and background are not enough properties to represent texture, as we have already
shown with images (b) and (c) of �gure 1, where these two di�erent textures present identical blobs and
therefore identical 1st order statistics in the sense of texton theory. Di�erence arises from an emergent
pattern perceived from the blob arrangement, hence, a global spatial-frequency analysis is needed [2].
At �gure 1. (e) and (f) we display the checked pattern emerging from both textures.

From the previous example we can conclude that spatial blob organisations can be essential to
represent textures and to avoid metamers. Therefore, we need to give a de�nition for emergent patterns,
since our representation will have to consider their existence and attributes. We can assume that an
emergent pattern is an association of blobs that are perceptually grouped as entities that appear repetitively

across the image.
As we have done for blob attributes, we will also consider the attributes of the emergent patterns.

We will describe every emergent pattern in the image by its orientation, scale related to the image size
and a degree of con�dence about how it is perceived. We will give a low degree of con�dence when they
are only intuit, as the checked pattern emerging from image 1.(a),(b). High degrees of con�dence will
be assigned when the checked pattern is perfectly de�ned as in �gure 2.(a).
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At this point, di�culty arises when we need to de�ne which are the most common emergent patterns
that can be perceived from any natural or synthetic image. Some research has been done in this sense
and some more will need to be done in future, but the experiment we propose here can be a good test-bed
to analyse this problem. As a starting point, we propose the following emergent patterns: ring, striped,
checked, crossing, arrow, T and polygonal. In �gure 6 we can see the proposed emergent patterns as
a basis to describe any texture. In section 6 we will show how the automatic detection of emergent
patterns will require scale-space mechanisms, as it can be seen in �gure 8.

Once we have de�ned blobs and emergent patterns we need to compile all the given information. We
propose to do it by introducing the concept of subtexture. A subtexture is a set of blobs or patterns

sharing a common attribute, such as scale, orientation and contrast or con�dence. A global texture
representation will be obtained by joining all its subtexture representations. The number of subtextures
of a given texture can vary depending on its complexity.

To show the ability of subtexture concept in describing textures, let us comment some details on how
di�erent images in �gure 2 will be represented later on. The results are summarized on tables 5, 6 and
7. An example on how the number of subtextures explains the texture complexity is shown with image
(f), only two subtextures are needed to represent it, one to describe elongated dark blobs and the other
one to explain the crossing emergent pattern, on the other hand �ve subtextures are needed to describe
images (c), (d) and (g).

Image (d) is described by four subtextures, three of them to describe three di�erent sizes of bright
blobs, and one subtexture to describe their polygonal emergent shape. Apart from subtextures descrip-
tion, images (d), (e) and (f) present the property of having a background. Images (a) and (h), share
the property of having T emergent patterns that usually appear like T-junctions in brick walls. The
con�dence of these emergent patterns is very high in both images, whereas the ring pattern in image
(b), formed by the petals of the �owers, has a very low con�dence.

5 Proposed experiment

According to the blob-based representation we have de�ned above, we propose now a psychophysical
experiment to collect information about human texture perception following a subtexture scheme in
terms of their blobs and emergent patterns.

The �rst step to assure consistency of data concerns �xing display conditions of any texture. As we
are suggesting a web-based experiment, that is an open laboratory, every experiment will have to pass
a calibration process to assure equal conditions on any screen. Because our image database can change
along time, we will not be able to assure a �xed image size, therefore we have selected a visual angle
that allows to see a usual 256�256 image on a common display resolution. The selected conditions we
propose are the following, the image being the stimulus should be displayed on 7.5 degrees of visual angle
and from a viewing distance of 50cm. The stimulus should be overlapped on a 15 degrees background
with a grey level equal to the mean of the stimulus displayed, this is suggested to avoid in�uences from
the background, although a common background for all the images could also be justi�ed in order to �x
contrast judgements. The procedure for the calibration process can be easily implemented by printing a

standard pattern that has to be manually suited to the window size whose �nal conditions can be stored
by the web software in Java.

The experiment can not begin unless the user has performed two actions, these are, the calibration
process and reading the necessary a priori knowledge on how to perform the experiment, that is, how
to look at texture. Thus, concepts of blobs, emergent patterns, attributes and subtextures have to be
understood, it can be done by selecting a subset of suited examples, for which a blob-based representation
is explained. Previous experiences have been done in closed laboratories and the experience has been
successful with non expert subjects.

Once all the previous steps have been done, subjects are asked to answer the following questions:

1. How many di�erent types of blobs do you see in this texture?
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(a) (b) (c) (d) (e)

Figure 4: (a) Blobs. (b) Elongated blobs or bars. (c) Dark blobs. (d) Bright blobs. (e) Di�erent contrast
blobs, High, Medium and Low, from left to right.

Blob Shape Blob Contrast Blob Scale

Non-elongated Elongated Dark Bright High Medium Low Very Big Big Normal Small Very small

           

Table 1: Multiple-choice answer form to �ll in after question 1.

2. Do you perceive an homogeneous background apart from the blobs?

3. How many di�erent types of emergent patterns do you perceive in this texture?

4. Are the elongated blobs and emergent patterns sharing one or several common orientation?

5. How is the organisation of blobs and emergent patterns across the image?

For every question some other sub-questions will arise, all of them require a multiple-choice answer
that is collected by a form. Let us examine the information collected by each question.

The aim of questions 1 and 3 is to get all the information from di�erent image subtextures. In
question 1 subjects have to answer about subtextures formed by a speci�c type of blobs. They have to
describe their shape, that is to decide if blobs are elongated or not. They also have to describe contrast,
it implies to point out if blobs are dark or bright, and if they present high, medium or low contrast. All
these attributes are illustrated in �gure 4. Finally they have to describe scale, the election of the scale
will be made by similarity to other images where scale is the essential texture attribute. These images
are shown in �gure 5. A less intuitive way to specify scale could be by a relative scale factor between
the size of the image and the image window containing the blob. From our experience, the comparison
between di�erently scaled images is a quite easy way to answer the question.

The goal of question 3 is to collect information about subtextures due to emergent patterns. Subjects
have to answer about the shape of the pattern chosing on the corresponding shape, as it is shown in
table 2 and considering theoretical emergent patterns shown in �gure 6.

For each type of pattern subjects are asked to give a degree of con�dence on how this pattern is
perceived. The answer should be 5 if the subtexture is formed by perfect rings, however it should be 1
if the subtexture is formed by 5 blobs perceptually grouped on a circumference. As it has been done for
blob-based subtextures the scale of patterns has to be speci�ed. All this information is compiled by the
form presented in table 2.

Above questions and corresponding forms are those from which a major di�culty raise and probably
greater variances will arise from judgements. The rest of questions are easier to answer. Question 2 gets
information about the existence of a background, �gures 3.(b) and (c) show two examples of textures
with and without a perceived background, respectively. Question 4 asks for the existence of predominant
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(a) Very Big (b) Big (c) Medium (d) Small (e) Very small

Figure 5: From left to right, examples of textures with very big scale, big scale, medium scale, small
scale and very small scale.

(a) (b) (c) (d) (e) (f) (g)

Figure 6: (a) Ring. (b) Striped. (c) Checked. (d) Crossing. (e) Arrow. (f) T. (g) Polygonal.

Pattern Shape Pattern Con�dence Pattern Scale

Ring Striped Checked Crossing Arrow T Poly. 1 2 3 4 5 Very Big Normal Small Very

Big small

                

Table 2: Multiple-choice answer form to �ll after question 3.
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0Æ 22Æ 45Æ 67Æ 90Æ 112Æ 135Æ 157Æ Random

Orientation

        

Table 3: Mulitple-choice answer form to �ll after question 4.

Perfectly Almost Certain Almost Completely

ordered ordered order random random

    

Table 4: Mulitple-choice answer form to �ll after question 5.

directions in subtextures, which can be described by sticking on the form presented in table 3. Most
common oriented subtextures usually present one or two predominant directions, although if there are
more they can be collected in the proposed form. In case texture present random orientation, it can also
be speci�ed in the form.

Last question tries to describe the structure of a subtexture. We have selected �ve degrees of structure
for each subtexture (See �gure 7).The form for this question is speci�ed in table 4, we suggest a possible
scale for texture structure in �gure 7. Two criteria can be used to establish the degree of structure: the
ful�lment of perfect rules for arranging patterns across the image and the existence of a perfect pattern.

In tables 5, 6 and 7 we give some examples on how a texture can be completely speci�ed by answering
all the questions of the proposed experiment.

6 Feasibility of a computational representation

In this paper we have given a guideline on how to collect some objective data for texture description.
Now, we want to demonstrate the possibility to derive computational representations to be easily tested

with the collected data.
Since the proposed representation is built from a subtexture interpretation, we propose a three steps

algorithm that perform the following processes:
Subtexture isolation process based on a multi-scale laplacian of gaussian �ltering.
Global spatial-frequency analysis from the Fourier spectrum of the �ltered images.
Interpretation of subtexture properties based on the Hough transform of the previously computed

information.
To deal with the �rst process, we need to decompose the image in three parts, as we want to consider

bright blobs, dark blobs and background separately. The method used to make this decomposition is
the laplacian of gaussian �ltering.

In a �rst step to obtain a complete description of an image texture, I , it is convolved by a gaussian
function in order to tune the �lter scale with the size of the di�erent blobs in the image, that is

I 0 = I � r2G�i
where �i 2 [0:5; 3]; i = 1:::5 (1)

and

G�(x; y) =
1

2��2
e
x2+y2

2�2 (2)

We are assuming a computational de�nition of blob similar to the one given in [37], where they are
de�ned as the duals of edges. Therefore, blobs are detected by �nding the zero crossings of the �ltered
image. Two main reasons justify this method, the �rst one is that the zero crossings assure closed blob
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Figure 7: Examples of images with di�erent degree of structure. Image columns are organized from left
to right from random to perfectly ordered.

Image Blob Shape Blob Contrast Blob Scale

Subtexture Non-elong. Elong. Dark Bright High Medium Low V.Big Big Medium Small V.Small

Tiles.B.1
p p p p

Tiles.B.2
p p p p

Flowers.B.1
p p p p

Flowers.B.2
p p p p p

Flowers.B.3
p p p p p p

Textile.B.1
p p p p

Textile.B.2
p p p p

Marble.B.1
p p p p

Marble.B.2
p p p p

Marble.B.3
p p p p

Cork.B.1
p p p p

Cork.B.2
p p p p

Crossings.B.1
p p p p

Lace.B.1
p p p p p

Lace.B.2
p p p p

Lace.B.3
p p p p

Brick&Fence.B.1
p p p p

Brick&Fence.B.2
p p p p

Brick&Fence.B.3
p p p p

Table 5: Examples of blob-based subtexture representation for texture images in �gure 2.
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Image Pattern shape Pattern Con�dence Pattern Scale

Subtexture R. S. Ch. Cr. A. T. P. 1 2 3 4 5 V.B. B. M. S. V.S.

Tiles.P.1
p p p

Tiles.P.2
p p p

Tiles.P.3
p p p

Flowers.P.1
p p p

Flowers.P.2
p p p

Textile.P.1
p p p

Textile.P.2
p p p

Textile.P.3
p p p p

Marble.P.1
p p p

Marble.P.2
p p p

Crossings.P.1
p p p

Lace.P.1
p p p p

Brick&Fence.P.1
p p p

Brick&Fence.P.2
p p p

Table 6: Examples of pattern-based subtexture representation for texture images in �gure 2. The pattern
shapes are: Ring (R.), Stripped (S.), Checked (Ch.), Crossing (Cr.), Arrow (A.), T (T.) and Polygonal
(P.). The scales are: Very Big (V.B.), Big (B.), Medium (M.), Small (S.) and Very Small (V.S.).

Orientation Structure

Image 0
Æ

22
Æ

45
Æ

67
Æ

90
Æ

112
Æ

135
Æ

157
Æ Random P. O. A. O. C.O. A.R. C.R.

Subtexture Orient.

Tiles.B.1
p p p

Tiles.B.2
p p p

Tiles.P.1
p p p

Tiles.P.2
p p

Tiles.P.3
p p p

Flowers.B.1
p p p

Flowers.B.2
p p p

Flowers.B.3
p p

Flowers.P.1
p p

Flowers.P.2
p p

Textile.B.1
p p p

Textile.B.2
p p p

Textile.P.1
p p p

Textile.P.2
p p

Textile.P.3
p p

Marble.B.1
p p

Marble.B.2
p p

Marble.B.3
p p

Marble.P.1
p p

Marble.P.2
p p

Cork.B.1
p p

Cork.B.2
p p

Crossings.B.1
p p

Crossings.P.1
p p

Lace.B.1
p p p

Lace.B.2
p p

Lace.B.3
p p

Lace.P.1
p p

Brick&Fence.B.1
p p

Brick&Fence.B.2
p p p

Brick&Fence.B.3
p p p

Brick&Fence.P.1
p p

Brick&Fence.P.2
p p

Table 7: Representation of orientation and structure for the subtextures of images in �gure 2. The
degrees of structure are: Perfectly Ordered (P.O), Almost Ordered (A.O.), Certain Order (C.O), Almost
Random (A.R.) and Completely Random (C.R.).
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Original image Dark blobs (� = 0:75) Bright blobs(� = 0:75) Background(� = 0:75)

Dark blobs (� = 3) Bright blobs(� = 3) Background(� = 3)

Figure 8: Blob segmentation and emerging patterns by �ltering at di�erent scales.

edges and the second one is that the sign of the pixels in all the regions of I 0 allow to state if the blob
is bright, dark or if the corresponding area belongs to the image background.

The e�ects of the scale parameter on this method are shown in �gure 8, where subtextures formed
by small blobs are segmented by �ltering with small scales and subtextures formed by emergent patterns
are segmented by �ltering with large scales.

The second step is to obtain global measurements on properies of the subtextures decomposed in the
previous step. The method must detect not only existing blob structures but also emerging patterns
from perceptual grouping of blobs. The Fourier transform is a global method, which perfectly suits
our interests [15], because it emphasize the information of the underlying structure of the texture. In
order to obtain information about the form and the relative position of each image subtexture we do the
Fourier transform of the texture image multiplied by the masks we have obtained in the �rst step of the
method, corresponding to blobs and background segmentations.

We have already established that there are three features we want to obtain from every subtexture:
degree of structure, predominant orientations and scale. We propose to get all these measurement from
the Fourier Spectrum of the texture.

Assuming that the Fourier transform is a decomposition of a function as an in�nite sum of expo-
nential functions with coe�cients, and considering these coe�cients are complex, we will only use their
amplitude. Thus, a peak in the Fourier spectrum of a texture means the corresponding frequency is
important in the image. In order to have an overview of all the important frequencies in the image,
we will extract the signi�cant peaks of the Fourier Spectrum and study their amplitude, position and
stability. The form of these peaks will depend on how regular the structure is. This means we need
to know not only the position and magnitude of the existing peaks, but also how sharp they are. In
order to obtain all this information about the peaks in the Fourier spectrum, we will use a thresholding
approach. For a �xed set of thresholds we calculate the area and the number of maxima we obtain. At
the end of this process, we have all the information about the magnitude and sharpness of the peaks in
the Fourier Spectrum.

At this point, we have got all the information necessary to begin the interpretation of subtexture
properties. It will require knowing how these peaks are organized in the Fourier spectrum. The Hough
transform detects the presence of parametrically representable groups of points in an image and it has
been used to extract the underlying structure in the spectrum, if it exists. We will use it to �nd if peaks

15



are grouped as straight lines or centered circles [23], from which basic measurements on subtexture
properties will be derived.

From the information inferred from all the previous processes, let us to give an overview on how to
describe the essential properties of a subtexture, that will be summed up in a six-dimensional represen-
tation, (s1; s2; s3; s4; s5; s6):

Structure (s1), indicates how structured the subtexture is, and is computed from the number of sharp
peaks and the existence of straight lines in the spectrum.

Scale (s2), represents the scale of the subtexture. Its computation will depend on whether the subtex-
ture is structured or not. If it is, scale will be given by the most important frequency, and if it is
not it will be derived from the radius of the most representative centered circle.

Orientation (s3; s4; s5; s6), represents the orientations of the four predominant directions. In case
there are no predominant directions, all values will be 0, otherwise they will have the value of
the corresponding orientation. They are deduced from the directions of the straight lines in the
spectrum and the position of the peaks.

At this point we can completely characterize a texture, I , by a two-dimensional matrix, denoted as
R and given by

RN�6 = (sij) (3)

where N is the number of subtextures needed to represent texture I , where ith row corresponds to
the feature vector of each the ith subtexture.

7 Summary

The main objective of this work has been to give a general blob-based texture representation. It has
to allow to collect data on how textures are perceived by human subjects, without constraints due to
usual closed-lab conditions. Most common experiments have been usually based on two di�erent type
of experiments, some based on preattentive segregation and the rest based on similarity judgements. In
both approaches, the selection of a given set of image could condition their conclusions, since in any case
we can not assure that a �nite set of textures is enough representative of any texture. Moreover, it has
been shown in other works that experiments based on attentive cognition processes can be a�ected by
content-dependency e�ects.

The characteristics of this representation make us to suggest a web-based experiment to collect a
large amount of experiments on di�erent subjects and on wide sets of images since it can remain open
for a long time and available from anywhere.

A large dataset on how textures are perceived would be an excellent tool to test algorithms for
the computer vision community. It could improve current performance evaluation procedure based on
building large image databases from dividing texture images in small parts.

Other interesting aspects could be the use of this data from a psychophysical point of view to infer
perceptual representation spaces and their properties such as dimensionality or identi�cation of relevant
dimensions.

As a �nal remark we want to note that all this work has to be understood as a �rst proposal and
some aspects still remain to be improved. Parts of the representation such as as those concerning the
especi�cation of emergent patterns needs to be better justi�ed. This �rst approach has been mainly
based on the results of previous experiments with 15 subjects. Although it is still incomplete we think
it can be a useful tool towards a validation of computational representation of textures.
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