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Abstract— The growing of multimedia content has motivated
the need of tools to do image browsing and annotation; several
texture descriptors have been proposed, but the high degree of
complexity textures can achieve has limited their success. In this
paper the concept of subtexture is introduced in order to make
the automatic description of a texture adaptable to its complexity
degree.

A subtexture component is defined by sets of blobs or emergent
patterns that have similar simple features, and can be fully
described by a 7-dimensional vector, similar to the descriptor
proposed in MPEG-7 standard. Thus, we propose a compre-
hensive texture description formed by the descriptions of its N
subtexture components, that is, a Nx7 matrix where the number
of rows is related to the complexity of the texture.

In this work a multiscale method to identify the subtexture
components is presented. It is based on automatic scale selec-
tion for blob detection. Once the subtextures are identified, a
global feature analysis provides the attributes of each subtexture
component. Finally, the comprehensive descriptor is built from
combining all subtexture information

I. I NTRODUCTION

Texture is an important visual cue, and thus has been widely
studied in Computer Vision, but by now a standard and general
definition of texture in the Computer Vision sense has not yet
been presented. Texture is necessary for many machine vision
applications, and thus several computational approaches to
build texture representations have been presented [1]. In most
cases the representations obtained were directed by specific
tasks such as image classification [2], image retrieval [3] or
image segmentation [4], however psychophysical studies on
human texture perception have been the motivation for others
[5]. Some texture spaces have been derived from these studies,
but for the moment none of the approaches leads to a general
texture representation space.

Perceptual descriptions of image content are necessary to
perform tasks such as browsing or annotation. A texture
description in textual terms and related to how textures are
perceived by human beings is necessary for image browsing or
image annotation. In this scope, the MPEG-7 standard, devoted
to provide a set of standardized tools to describe multimedia
content, proposes a texture browsing descriptor (TBD) based
on perceptual characterization of a texture [6], [7].

The goal of this paper is to present a new approach to texture
description by taking into account the texture complexity
degree. We try to extend the TBD descriptor by describing
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Fig. 1. Examples of simple textures

the subtexture components of the texture, so that all the infor-
mation is comprehended and a wider and adaptable description
is obtained.

To this end, the paper is organized as follows. Section 2
sets the background and section 3 defines the concept of
subtexture component giving the computational details on how
to obtain them. The texture description based on the subtexture
components is presented in section 4. Some results are shown
in section 5 and finally section 6 presents the conclusions and
further work.

II. BACKGROUND

As mentioned in the introduction, texture does not have
a standard definition in Computer Vision. In this paper, a
grey-level image is considered to be a texture if it presents
homogeneity in its grey-level distribution and at least four
non-overlapped windows can be taken from the image sharing
the same texture properties.

Any approach to texture description should be based on how
human beings perceive and describe textures. To this end, let
us analyse the results that have been obtained in psychophysics
on texture perception. Two approaches are confronted as being
the basis for an internal visual representation of texture. On
one hand, local feature extraction processes have received a
hard support from the Julesz’s [8] texton theory, and on the
other hand, a global spatial analysis has been demonstrated
to be necessary by Beck [9]. Examples in figure 1 show that
both approaches are part of the process by which the human
visual system deals with texture: textures in images (a) and
(b) are segregable due to differences in the blob contrast,
i.e. local features, whereas images (b) and (c) are segregable
because of the orientation of the patterns emerging from the
texture image. Therefore, not only global methods but also
local properties should be taken into account when dealing
with texture description.



It can be shown that if textures are regarded as blobs
and emergent patterns, the complexity level of textures, both
natural and synthetised, is unlimited, like textures in figure 1
(d) and (e), which are made out of combination of different
simpler textures, i.e. (e) is obtained by combining (a) and
(b). Despite this wide range of complexity degrees in texture,
in previous texture descriptors all textures are described with
the same number of features. However, if human subjects are
asked to describe more complex textures, they will use more
words or features than they use for simpler textures.

Another advantage of considering textures as a combination
of properties from blobs and emergent patterns is the ability
to build objective descriptors. Most of the experiments that
have been done to derive the dimensions of the texture
space have been based on texture comparison or segregation.
Therefore, the results that are obtained might not be suitable
for texture description, but for texture comparison. Rao et
al, in [10], presented a serie of psychophysical experiments
concluding there are three main dimensions for texture, namely
structure or regularity, scale, and directionality, nonetheless
these concepts can not be clear and objective enough for
description when both regular and random patterns appear in
a texture at the same time. The foregoing discussion makes
us consider that a texture descriptor willing to be general and
meaningful should fulfil two conditions: (i) different texture
degrees of complexity must be taken into account and (ii)
textures have to be represented by attributes of their own
characteristic elements, and not only by comparison to other
textures. These considerations have motivated us to introduce
the concept of subtexture component, which is defined in the
following section.

III. SUBTEXTURE COMPONENTS

Previous considerations lead us to define a subtexture com-
ponent of a texture image as aset of blobs or emergent
patterns sharing a common property all over the image.
Then, a texture image will be formed by several subtexture
components, each one characterized by only one kind of blobs
or emergent patterns. In figure 2 textures with different number
of subtexture components are shown. The texture in image (a)
has only one subtexture component defined by bright blobs
randomly positioned, the image in (c) has two components
due to the different size of the bright blobs and in (d) there
are also two subtexture components, since there are bright
blobs but also triangles emerging from the blobs grouping.
Finally, texture in (e) has three subtexture components, since
two previous subtexture components are positioned forming a
striped emergent pattern.

The fact that textures are understood as a combination
of components allows to describe textures in terms of the
attributes of their components, instead of describing the whole
texture. This approach to texture description fulfils the afore-
said conditions: (i) a texture can be made out of as many
subtexture components as necessary, and thus the adaptation
to different degrees of complexity is assured, and (ii) the
subtexture components can be described in terms of the
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Fig. 2. Textures having different number of subtexture components which
are defined by the property presented below each image.
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Fig. 3. Profiles of an image with 3 gaussian blobs with different contrast
andσ=2,4,8 respectively. (a) shows a profile of the image (solid line) and the
same profile of the image filtered by a laplacian of gaussian filter withσ = 2
(dashed line),σ = 4 (dash-dotted line) andσ = 8 (dotted line). In (b) the
filter is thenormalizedlaplacian operator.

attributes of its own blobs or emergent patterns, and not by
comparison with other textures.

Once this concept has been defined and explained, now the
goal is to define a computational approach to automatically
extract them since it will be the base of the texture descriptor
presented in the following section.

In order to identify the subtextures forming a texture, its
characteristic elements, i.e. blob or emergent patterns, have to
be detected. For this purpose, the scale-space theory seems
to be a good approach, since it provides a well-founded
framework for dealing with image structures at different scales.
Given an image, its scale-space representation is built by
convolving it with gaussian kernels of different sizes [11].
Then, blobs of different sizes can be detected in this multiscale
representation of the image. The problem in these multiscale
approaches is to know in which scale a given blob or structure
of the image is better defined.

Lindeberg in [11] proposes a method to automatically select
the scale at which local image structures are better detected
by differential operators. The method consists in introducing
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Fig. 4. Extraction of subtexture components: first row shows the subtexture
components obtained of bright blobs, second row for dark blobs

a new operator, thenormalizeddifferential operator∂ξ,norm:

∂ξ,norm = σ∂x (1)

which corresponds to the change of variablesξ = x
σ . If

differential operators are computed in terms of this new
operator, the filter response assumes a maximum at a scale
similar to the size of the local structure of the image.

For blobs detection the differential operator most commonly
used is the laplacian [12], since is gives a strong response at
the center of blob-like structures. In figure 3 the profiles of an
image made with gaussian blobs of different sizes and contrast
filtered by the laplacian and thenormalizedlaplacian,

∇2
norm = σ2∇2 (2)

are shown. It can be seen that whennormalizedfiltering is
performed the blobs are detected as maxima over space and
scale, where the scale corresponds to the blob’s size.

Given a texture imageI, its scale-space representation is
given by {Sσ(I) = I ∗ Gσ}, whereGσ is a gaussian filter
with standard deviationσ. For each scale, the filtered image
Lσi = ∇2

norm(Sσi(I)) is computed. The bright blobs of
the image can be then characterized as maxima ofLσ over
space and scale, and dark blobs as minima. Therefore, given
a scale, the points inLσ which have obtained an extremal
response for this particular scale are representing blobs having
the same contrast and the same size. In case these blobs are
homogenously distributed over the image, and according to the
subtexture component definition given above, we can assume
they are forming a subtexture component of the texture. Thus,
if p is the number of scales considered, for an imageI we
obtainn ≤ 2p subtexture components{Si(I)}i=1,...n.

In figure 4 an example of how the subtexture components
of a texture are isolated is shown.

IV. T EXTURE DESCRIPTION

Once we have outlined the method to obtain the subtexture
components of a texture, let us present the texture descriptor
based on the subtexture components attributes. In [7] the TBD
of a texture image is given by the regularity, two predominant
directions and two predominant scales. In our case, we propose
to describe a subtexture componentSi(I) of a textureI by

D(Si(I)) = [c, sc, st, d1, d2, d3, d4] (3)

where the meaning of the 7 components is the following:
• c gives the contrast of the blobs,b for bright blobs and

d for dark blobs
• sc represents the scale, ranging from1 (small) to 5

(large).
• st is the structure, ranging from1 (random) to 5 (struc-

tured).
• d1, d2, d3 andd4 are the orientations of the predominant

directions.
Let us define the steps to compute the subtexture attributes.

Contrast and scale
In previous section it has been stated that the contrast and
scale of the blobs or emergent patterns forming a subtexture
component are the attributes that identify it. As it has been
shown, the contrast of the blobs has been derived fromLσ,
and the scale is directly given by the corresponding filter.

In order to estimate the remaining features of the subtexture
components we have chosen to calculate the Fourier Spectrum,
which has already been used in previous works for texture
feature extraction [13]. Moreover, there are psychophysical
evidences that support global frequency analysis plays an
important role in human perception of textures [14].

Degree of structure
In order to determine the degree of structure of a subtexture
component, we will study the shape and location of its Fourier
Spectrum peaks. Firstly, we will estimate a measure of the
stability of them by gradually thresholding the spectrum.
Afterwards, we will evaluate the alignment of the peaks by
computing a modified Hough transform of the maxima, since
only the lines which have been voted by several points are
selected. Several measures are extracted from this analysis:

- sp : number of stable peaks (i.e. appearing in 3 or 4
thresholds)

- vsp : number of very stable peaks (i.e. appearing in 5 or
more thresholds)

- l : number of straight lines
Calculation of the degree of structure,st, is then given by a
weighted sum of these parameters:α×l+β×sp+γ×vsp. The
values for [α, β, γ] have been estimated to be[0.2, 0.3, 0.5]
from a preliminar psychophysical experiment where 16
subjects were asked to describe textures in terms of their
subtexture components features.

Predominant orientations
The predominant orientations of the subtexture components
are easily detected in the spectrum, since they also appear
as predominant orientations in the frequency domain. The
spectrum is transformed to polar coordinates and a histogram
of the orientations with 8 equally distributed bins is computed.
The predominant orientations of the subtexture component
are those having more than 20% of the points. This value
has also been deduced from the psychophysical experiment
mentioned above. The descriptor will take into account up
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Fig. 5. Examples of subtexture components analysis for the evaluation of the
degree of structure: images 1.a and 2.a are the subtexture components, their
spectrums are shown in 1.b and 2.b respectively, and 1.c and 2.c illustrate the
maxima and the straight lines obtained from the analysis

to 4 orientations, since it is difficult to find subtextures with
more predominant directions.

Building the global texture descriptor
Since the presented computational approach can extract more
than one component representing the same subtexture, we
will firstly apply a selective step that removes redundant
subtexture components. This redundancy is easily removed by
doing a similarity test. We will denote the number of relevant
subtexture components ask.

The texture global descriptor,GD(I) is a matrix whose rows
are the description of the relevant subtextures:

GD(I) = (D(Si(I)), . . . ,D(Sk(I)))T (4)

As it can be seen, the number of rows of the texture
descriptor depends on the texture complexity. In next section
some examples of texture descriptions are given.

V. RESULTS

The description of several textures is presented in figure
6, under every imageI the corresponding global descriptor
GD(I) is given. For example, image (a) is formed by two
subtextures, one made out of bright blobs of medium scale
(sc = 3) with an almost random structure (st = 2) and a
predominant orientation of135◦, and another one made out
of small dark blobs with the same structure and predomi-
nant orientation. On the one hand it can be seen that the
number of subtexture components that are obtained matches
the complexity the texture, images (c) and (e) which can be
considered complex textures are described by three and four
components respectively, while images (a) and (h), which
are much simpler, are described by two components only.
On the other hand, we can see that the contrast, degree of
structure and orientations of the subtexture components are
quite well detected in most cases. Finally, it can be seen from
the examples that the presented texture description is enriched
by the fact that subtexture components are treated separately.
For instance, in image (g) the horizontal orientation due to the
emergent pattern due to elongated bright blobs is only detected

for a medium scale, while the vertical orientation due to small
elongated blobs appears at smaller scales.

VI. CONCLUSIONS AND FURTHER WORK

This paper has mainly two contributions. Firstly, the concept
of subtexture component has been introduced, which allows
a texture description that can be interesting both from a
computational and a perceptual point of view. Secondly, we
have presented a first approach to a computational texture
descriptor which is shown to be general enough to give the
description of any natural texture.

The fact that the number of subtexture components can vary
makes this approach suitable to all levels of texture complexity,
which is very important for Computer Vision applications
where all types of images can be found. The presented texture
descriptor is based on perceivable characteristics of the image
without the need of comparison. This is indispensable for
applications such as image browsing where images have to
be described in terms of its own properties and in a way that
makes it easy to go from natural language to computational
representations.

Further work will be focused on the introduction of more
complex information such as the shape of the emergent
patterns and on an improvement of the subtexture components
descriptor. Besides, the performance of the description given in
natural language terms for image browsing in real applications
still has to be tested.
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�
b, 3, 2, 135, ·, ·, ·
d, 2, 2, 135, ·, ·, ·

� �
b, 2, 1, ·, ·, ·, ·
d, 2, 2, ·, ·, ·, ·

� 0@ b, 1, 5, 0, 90, ·, ·
d, 2, 2, 0, 90, ·, ·
b, 5, 3, ·, ·, ·, ·

1A
(a) (b) (c)

�
b, 2, 2, 90, 112, ·, ·
d, 2, 1, 90, 112, ·, ·

� 0B@ b, 2, 5, 0, 45, 90, 135
d, 1, 5, 45, 135, ·, ·
b, 3, 5, 0, 45, 90, 135
d, 3, 4, 0, 90, ·, ·

1CA �
b, 2, 3, ·, ·, ·, ·
d, 2, 2, ·, ·, ·, ·

�
(d) (e) (f)

0B@ b, 1, 1, 90, ·, ·, ·
b, 3, 3, 0, 90, ·, ·
d, 1, 1, 90, ·, ·, ·
d, 4, 4, 90, ·, ·, ·, ·

1CA �
b, 2, 3, 0, 22, ·, ·
d, 2, 3, 0, 22, ·, ·

� 0@ b, 1, 2, 0, 112, ·, ·
b, 2, 1, 0, ·, ·, ·
d, 2, 4, 0, 112, ·, ·

1A
(g) (h) (i)

Fig. 6. Examples of texture descriptions


