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Abstract

Color constancy aims to compute object colors despite
differences in the color of the light source. Gamut-based
approaches are very promising methods to achieve color
constancy. In this paper, the gamut mapping approach is
extended to incorporate higher-order statistics (derivatives)
to estimate the illuminant.

A major problem of gamut mapping is that in case of
a failure of the diagonal model no solutions are found,
and therefore no illuminant estimation is performed. Im-
age value offsets are often used to model deviations from
the diagonal model. Prior work which incorporated robust-
ness to offsets for gamut mapping assumed a constant off-
set over the whole image. In contrast to previous work, we
model these offsets to be position dependent, and show that
for this case derivative-based gamut mapping yields a valid
solution to the illuminant estimation problem.

Experiments on both synthetic data and images taken un-
der controlled laboratory settings reveal that the derivative-
based and regular gamut mapping methods provide similar
performance. However, the derivative-based method out-
performs other methods on the more challenging task of
color constancy for real-world images.

1. Introduction

Differences in illumination cause measurements of ob-
ject colors to be biased towards the color of the light source.
Fortunately, humans have the ability of color constancy:
they perceive the same color of an object despite large dif-
ferences in illumination. A similar color constancy capabil-
ity is necessary for various computer vision tasks such as
object recognition, video retrieval and scene classification.

In this way, the extracted image features are only dependent
on the colors of the objects. This is beneficial for the task at
hand [15].

Many color constancy algorithms have been proposed,
see [16] for a recent overview. Two widely used algo-
rithms make use of simple statistics of the image to estimate
the color of the illuminant. One is based on the assump-
tion that the average color in a scene is achromatic (called
the Grey-World assumption [4]), while the other assumes
that the maximum response in a scene is caused by a per-
fect reflectance (called the White-Patch assumption [18]).
Similar methods are the Shades of Grey algorithm [12],
which actually embodies the Grey-World and the White-
Patch algorithms as special cases, and the Grey-Edge al-
gorithm [20]. Algorithms that use more advanced statisti-
cal information of the image, acquired in a learning phase,
include probabilistic methods [3, 6] and gamut-based meth-
ods [9, 10, 14]. Gamut-based methods are very promising
algorithms to achieve color constancy with high accuracy.
Therefore, in this paper, we focus on gamut mapping.

Gamut mapping algorithms are restricted to the use of
pixel values to estimate the illuminant. As a consequence,
higher-order statistics in images are ignored. Recent work
by Van de Weijer and Gevers [20] used image derivatives
to improve color constancy. The Grey-World algorithm was
extended to incorporate derivative information, resulting in
the Grey-Edge algorithm, and this extension was shown to
outperform current state-of-the-art methods. Consequently,
the aim of this paper is to incorporate derivative informa-
tion into more sophisticated approaches such as the gamut
mapping approach.

Incorporation of derivative information has several ad-
vantages over the direct use of pixel values. Image deriva-
tives are invariant with respect to an offset of the RGB val-
ues. Shafer [19] models diffuse light by adding such an off-
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set to the (R,G,B)-values of the image. Diffuse light is a dis-
turbing factor in real-world images as it occurs both in out-
door scenes (e.g. blue light coming from the sky) and in in-
door scenes (e.g. light (inter)reflected by walls, ceilings and
nearby objects). Furthermore, Finlayson et al. [11] use this
offset to model slight deviations from the diagonal model,
since the assumptions underlying the diagonal model (e.g
narrow-band filters) are not always satisfied. Both diffuse
lighting and deviations from the diagonal model can de-
grade the performance of gamut mapping algorithms. The
novelty of this paper is a derivative-based method using the
elegance of the gamut mapping approach with additional
robustness of the image derivatives to deviations of the di-
agonal model and diffuse lightning.

The paper is organized as follows. In sections 2 and 3,
color constancy is defined and the original gamut mapping
is explained, respectively. In section 4, the derivative-based
gamut mapping algorithm is proposed. In sections 5 and 6,
the experimental results and the conclusions are presented.

2. Color Constancy
2.1. Reflection model

An image f can be modelled under the assumption of
Lambertian reflectance as follows:

f(x) =
∫
ω

e(λ)ρk(λ)s(x, λ)dλ, (1)

where e(λ) is the color of the light source, s(x, λ) is de sur-
face reflectance and ρk(λ) is the camera sensitivity function
(k ∈ {R,G,B}). Further, ω and x are the visible spectrum
and the spatial coordinates respectively.

Shafer [19] proposes to add a ”diffuse” light term to the
model of eq. (1). The diffuse light is considered to have a
lower intensity and to be coming from all directions in an
equal amount:

f(x) =
∫
ω

e(λ)ρk(λ)s(x, λ)dλ+
∫
ω

a(λ)ρk(λ), (2)

where a(λ) is the term that models the diffuse light. Using
this equation, objects under daylight should be better mod-
elled, since daylight consists of both a point source (the sun)
and diffuse light coming from the sky. Shafer does remark,
however, that the assumption that diffuse light is equal in all
directions, is highly idealized. A more realistic approxima-
tion would consider the diffuse light to be dependent on the
position in the image, according to:

f(x) =
∫
ω

e(λ)ρk(λ)s(x, λ)dλ+
∫
ω

a(x, λ)ρk(λ), (3)

where we assume the dependence of the position to be low-
frequent as indicated by the overline. This model falls short

to model the real nature of light-reflections and interactions
of diffuse light and object reflections, however it allows to
model the real world closer than eq. (2).

By assuming that the color of the light source e depends
on the color of the light source e(λ) as well as the camera
sensitivity function ρk(λ), color constancy is then equiva-
lent to the estimation of e:

e =
∫
ω

e(λ)ρk(λ)dλ. (4)

Since, in general, only the image values of f are known, this
is an under-constrained problem, and it therefore can not be
solved without further assumptions.

2.2. Diagonal model

Color constancy can be reached by determining the color
of the illuminant of an input image. However, in many cases
the color of the light source is of less importance than the
appearance of the input image under a reference light. The
aim of many color constancy applications is to transform
all colors of the input image, taken under an unknown light
source, to colors as they would appear under a reference
light. This transformation can be modeled by a diagonal
mapping or von Kries Model [21]. The diagonal mapping is
given as follows:

f c = Du,cfu, (5)

where fu is the image taken under an unknown light source,
f c is the same image transformed, so it appears if it was
taken under the reference light (called canonical illumi-
nant), and Du,c is a diagonal matrix which maps colors that
are taken under an unknown light source u to their corre-
sponding colors under the canonical illuminant c:RcGc

Bc

 =

α 0 0
0 β 0
0 0 γ

 RuGu
Bu

 (6)

However, under some conditions, the diagonal model is
too strict, and no solutions are found (this situation is called
the null solution problem). This could be caused by satu-
rated colors or the presence of surfaces that were not repre-
sented in the canonical gamut. To overcome this, Finlayson
et al. [11] accounted for the failure of the diagonal model
by adding an offset term to the diagonal model, resulting in
the diagonal-offset model:RcGc

Bc

 =

α 0 0
0 β 0
0 0 γ

 RuGu
Bu

 +

o1o2
o3

 (7)

Deviations from the diagonal model are reflected in the off-
set term (o1, o2, o3)T . Ideally, this term will be zero, which
is the case when the diagonal model is valid.
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Interestingly, the diagonal model also takes diffuse light-
ing into account as approximated by eq. (2). To take how-
ever position dependent diffuse lighting of eq. (3) into ac-
count extend the model to:RcGc

Bc

 =

α 0 0
0 β 0
0 0 γ

 RuGu
Bu

 +

o1 (x)
o2 (x)
o3 (x)

 (8)

In conclusion, eq. (8) can be used to overcome devia-
tions from the diagonal model and diffuse light (assuming
the dependence of the position is low-frequent).

3. Gamut Mapping
The gamut mapping algorithm has been introduced by

Forsyth [14]. It is based on the assumption, that in real-
world images, for a given illuminant, one observes only a
limited number of colors. Consequently, any variation in
the colors of an image (i.e. colors that are different from the
colors that can be observed under a given illuminant) are
caused by a deviation in the color of the light source.

The first stage of the algorithm is to find this limited set
of colors that can occur under a given illuminant. This set
is called the canonical gamut C and is found by observing
as many surfaces under one known light source (called the
canonical illuminant) as possible.

The next stage, where the illuminant of an input image
(taken under an unknown light source) is to be estimated,
consists of three important steps:

1. Estimate the gamut of the unknown light source by as-
suming that the colors in the input image are represen-
tative for the gamut of the unknown light source. So,
all colors of the input image are collected in the input
gamut I.

2. Determine the set of feasible mappings M, i.e. all
mappings that can be applied to the gamut of the in-
put image and that result in a gamut that lies com-
pletely within the canonical gamut. Under the assump-
tion of the diagonal mapping, a unique mapping exists
that takes the gamut of the unknown light source to
the canonical gamut. However, since the gamut of the
unknown light source is simply estimated by using the
gamut of one input image, in practice several mappings
exist. Every mapping i in the setM should take the in-
put gamut completely inside the canonical gamut:

MiI ∈ C. (9)

3. Apply an estimator to select one mapping from the set
of feasible mappings. The selected mapping can be
applied to the canonical illuminant to obtain an esti-
mate of the unknown illuminant. The original method

[14] used the heuristic that the mapping resulting in
the most colorful scene, i.e. the diagonal matrix with
the largest trace, is the most suitable mapping. Alter-
natives are to use the average of the feasible set or a
weighted average [1].

These are the basic steps of the gamut mapping algo-
rithm. Several modifications have been proposed. Diffi-
culties in implementation are addressed in [7, 8], where it
was shown that the gamut mapping algorithm can also be
computed in chromaticity space (RB ,

G
B ). However, the per-

formance of this 2D approach is a slightly lower than the
performance of the 3D approach. Dependency on the diag-
onal model is addressed in [1], where the canonical gamut is
systematically enlarged by accounting for deviation of the
diagonal model. In [11] the diagonal-offset model is in-
troduced to account for diffuse light. Further, in [10] the
problem of illuminant estimation is effectively reduced to
the problem of illuminant classification.

4. Derivative-based Gamut Mapping

As discussed above, gamut mapping is based on the as-
sumption that only limited set of colors are observed under
a certain illuminant. Multiple phenomena in nature, such
as zooming out, can cause the mixture colors. Therefore, if
two colors are seen under a certain illuminant, then also all
colors in between could be observed under this illuminant,
since the set of all possible colors which can be seen under
a certain illuminant form a convex hull (i.e. gamut). In this
paper the gamut theory is extended by noting that the above
is not only true for image values but also for every linear
combination of image values. Hence, the correct estimate
of an illuminant will also map every gamut which is con-
structed by a linear combination of image values back into
the canonical gamut constructed with the same linear op-
eration. In this paper, one such linear combination will be
examined in more detail, namely image derivatives, which
have some nice properties we will discuss in the following.

At the basis of the work of Forsyth [14] is eq. (1), in
which an image f is composed of the color of the light
source e(λ), the camera sensitivity function ρk(λ), and the
surface reflectance properties s(x, λ). The effect of dif-
fuse light on the formation of an image can be modelled by
adding an offset term (eq. (2)). By computing the deriva-
tive of image f , it can be easily derived that the effect of the
diffuse light source a(λ) is cancelled out, since it is inde-
pendent of the surface reflectance term. Furthermore, if we
assume the diffuse lighting to be low frequent (i.e. it is con-
stant over the size of the derivative filter), derivative-based
gamut mapping is also invariant to location-dependent off-
sets as modelled by eq. (3). Then, the reflection model of
the spatial derivative of f at location x on scale σ is given
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Figure 1. Examples of the regular gamut and the gamut of the derivatives of several scenes. The images of the monkey are taken from
[2], and the real-world images are taken from [5]. From these images, it can be seen that the regular gamuts as well as the gamuts of the
derivatives have discriminative power, and are different from each other.

by:

fx,σ(x) =
∫
ω

e(λ)ρk(λ)sx,σ(x, λ)dλ. (10)

Next, equivalently to [14], the orthonormal basis
{φm(λ), 0 ≤ m ≤ L − 1} is considered for the space
spanned by ec(λ)ρk(λ), where L denotes the number of re-
ceptors and ec(λ) is the canonical illuminant:

ec(λ)ρk(λ) =
j=L−1∑
j=0

akjφj(λ). (11)

Using this basis, a mapping Mc,u which takes an image
taken under the canonical illuminant c to its appearance un-
der the unknown light source u can be recovered:

Mc,u
k =

i=L−1∑
i=0

j=L−1∑
j=0

rkj(u)ajiφi(λ)

×
∫

sx,σ(x, λ)dλ

+
∫
Fk(λ, u)sx,σ(x, λ), (12)

where Fk(λ, u) is a residue orthogonal to all the basis
φm(λ). Now by expanding the surface reflectance in terms
of the basis, a unique decomposition for any sx,σ(x, λ) can
be found:

sx,σ(x, λ) =
i=L−1∑
i=0

πi(x)φi(λ) + s∗x,σ(x, λ), (13)

where s∗x,σ(λ) is a residue. Using the above formulation, a
color constancy equation based on image derivatives, sim-
ilar to the one proposed by Forsyth, can be derived:

Mc,u
k =

i=L−1∑
i=0

j=L−1∑
j=0

rki(u)aijπj

+
∫
Fk(λ, u)s∗x,σ(λ)dλ. (14)

Under the minimal assumption of the first kind (i.e. con-
straining the illuminant such that the residual terms are
zero), the residual term Fk(λ, u) is set to zero and the un-
known light source u can be found by applying a version of
the coefficient rule.

During the construction of the gamuts (both the canoni-
cal gamut and the input gamut), one should make sure that
the transitions that are captured in the gamut are symmet-
ric (e.g. if a transition from surface a to surface b is found,
then the transition from surface b to surface a should also
be in the gamut). Examples of the regular gamut and the
gamut of the derivatives of several images are shown in fig-
ure 1. From these images, it can be seen that both the reg-
ular gamut and the derivative-based gamut contain discrim-
inative power. Both the regular gamuts and the derivative-
based gamuts of the images are completely different, even
though the images are similar in content. Finally, it should
be noted that the diagonal model can consist of strictly pos-
itive elements only.

5. Experiments

This section considers an empirical evaluation of the pro-
posed algorithm. Although the proposed method is suited to
include higher order derivatives (e.g. 2nd-nd order), in the
experiments the focus is on first order derivatives i.e. edges.
Edges are computed by a Gaussian derivative with σ = 3.

First, experiments are performed on synthetical data,
resulting in a systematic analysis of the derivative-based
gamut mapping. Then, experiments on real-world images
are conducted.

5.1. Performance measure

For all images in the data set (both synthetic and real-
world images), the correct color of the light source el is
known a priori. To measure how close the estimated illumi-
nant resembles the true color of the light source, the angular

in
ria

-0
02

64
81

3,
 v

er
si

on
 1

 - 
18

 M
ar

 2
00

8



error ε is used:
ε = cos−1(êl · êe), (15)

where êl · êe is the dot product of the two normalized vec-
tors representing the true color of the light source el and
the estimated color of the light source ee. To provide more
insight in the evaluation, the median as well as the mean
angular error will be reported [17].

5.2. Synthetical data

Two experiments are conducted. In the first experiment,
outlined in section 5.2.1, the performance of the different
gamut mapping algorithms is tested as a function of the
number of surfaces (edges). The second experiment, pre-
sented in section 5.2.2, focuses on the robustness of the
methods against deviations from the diagonal model and
diffuse light, modelled by simulating an offset in the di-
agonal model. We take the offset to be constant over the
image.

The data set used is constructed by Barnard et al. [2],
and consists of 1995 spectra taken from several sources. A
synthetic data set is created by combining n spectra with
one illuminant (chosen from a data set of 287 feasible il-
luminants, also from [2]). Using eq. (1), an illuminant-
dependant (R,G,B)-value can be constructed from a sur-
face reflectance spectrum, an illuminant spectrum and the
(known) camera sensitivity function.

For the regular gamut mapping algorithm, (R,G,B)-
values are used as the input of the algorithm. However, the
derivative-based gamut mapping is concerned with deriva-
tives. In the experiments, we focus on 1th-order statistics
i.e. edges. An edge is defined as the difference between two
(R,G,B)-values. Note that a scene with n different sur-
faces can contain several edges. However, the lower bound
on the number of different edges for a scene containing n
different surfaces is n− 1. The upper bound on the number
of edges can be determined by computing all possible edges
from one surfaces to another: for n surfaces, a total number
of 1

2n(n−1) different edges occur, where it is assumed that
an transition from surface a to surface b is identical to an
transition from surface b to surface a.

5.2.1 Number of surfaces

The first experiment is concerned with computing the color
constancy performance as function of the number of sur-
faces (or edges). Surfaces are randomly selected from the
database of surface reflectance spectra. To compare the per-
formance of the regular gamut mapping with the derivative-
based gamut mapping algorithm, two different number of
edges are created for each scene: the lower bound and
the upper bound. Along with a randomly selected illumi-
nant from the database of illuminants, a synthetic data set
is created containing n (R,G,B)-values, and n − 1 and

Figure 2. Results of experiment 1. The first figure shows the mean
angular error over 1000 scenes for every number of surfaces, the
second figure shows the median angular error.

1
2n(n−1) transitions, respectively. This process is repeated
1000 times, for n = {4, 8, 16, 32, 64, 128, 256, 512, 1024}.

In figure 2, results are shown for the regular gamut map-
ping algorithm and the derivative-based gamut mapping al-
gorithm. The median and the mean angular error as func-
tion of the number of surfaces are shown. These graphs
shows that the regular gamut mapping slightly outperforms
the derivative-based gamut mapping when the number of
surfaces is small (log2(n) < ±6). However, for a larger
number of surfaces (and hence a larger number of edges),
the derivative-based gamut mapping outperforms the regu-
lar gamut mapping. Note that the complexity of the two
algorithms is comparable and the difference in runtime can
be neglected.

5.2.2 Robustness against disturbing effects

The second experiment involves the robustness against dif-
fuse light and deviations from the diagonal model, mod-
elled by simulating an offset of the diagonal model (see

in
ria

-0
02

64
81

3,
 v

er
si

on
 1

 - 
18

 M
ar

 2
00

8



Figure 3. Results of experiment 2. The figures show the change
in mean and median performance of the two algorithms. It can
be seen that the error of the regular gamut mapping algorithm in-
creases as the offset increases, while the derivative-based gamut
mapping is not affected.

eq. (7)). For this experiment, the number of surfaces is
kept fixed throughout the test. For each iteration, n = 8
surfaces are generated by randomly selecting 8 reflectance
spectra. These 8 surfaces are used to generate a scene
with 8 edges, which is near the lower-bound on the number
of edges. Next, instead of randomly selecting one illumi-
nant spectra like the previous experiment, these spectra are
combined with the canonical illuminant to form (R,G,B)-
values. The diagonal-offset model is used to create the
(R,G,B)-values under a different illuminant. The color
of this illuminant is determined by applying the diagonal
model to the canonical illuminant. The values of the ele-
ments of the diagonal matrix are randomly selected from
the range [0.5 . . . 1.5], and the offset is gradually increased,
ranging from 0% of the average pixel value in the scene
(i.e. no offset) to 30% of the average pixel value. So, a new
(Rnew, Gnew, Bnew)-value is generated by randomly select-

ing a value in the range of:

Rnew = [(R− p

100
x) . . . (R+

p

100
x)] (16)

Gnew = [(G− p

100
y) . . . (G+

p

100
y)] (17)

Bnew = [(B − p

100
z) . . . (B +

p

100
z)], (18)

where (x, y, z) is the average pixel value in the scene (i.e.
the average (R,G,B)-values of the 8 surfaces) and the off-
set is p%.

In figure 3, the results are shown, relative to the per-
formance without the simulation of the disturbing effects.
From this experiment, it can be observed that by adding
an offset to the diagonal model, the performance of the
derivative-based gamut mapping algorithm is not affected,
whereas the performance of the regular gamut mapping
drops dramatically. The error increases linearly with the
increasing offset.

In conclusion, the derivative-based method significantly
outperforms the regular gamut mapping for simulated fail-
ure of the diagonal model and diffuse light.

5.3. Real data

The next experiments will be conducted on two sets of
real images. The first consists of images taken under labora-
tory settings [2], the second set contains real-world images
[5]. For these experiments, we follow the implementation
of [13, 11]. We use the L1 norm maximization, for both the
regular gamut and our derivative based gamut estimation.
For the diagonal-offset model, we also use the L1 norm
maximization of the diagonal transform while minimizing
the L1 norm of the offset [11]. As a preprocessing step for
regular gamut and diagonal-offset gamut, we use Gaussian
averaging with the same scale to compute the derivatives for
the derivative-based gamut. This procedure was found to
improve the results for both the regular gamut and diagonal-
offset gamut. To suppress high frequency noise amplifica-
tion from the derivative operation, we compute the image
derivatives with Gaussian derivative filters.

SFU data set. The images in this data set are all indoor
scenes. There are 31 scenes, taken under 11 different light
sources, resulting in a total of 321 images. For more infor-
mation on this set, refer to [2].

The results of the regular gamut (RG), the regular gamut
with the diagonal-offset model (RG+O) and the derivative-
based gamut mapping (DG) on this data set are shown in
table 1. From these results, it can be seen that the derivative-
based gamut mapping algorithm performs similar to the reg-
ular gamut mapping algorithm and the regular gamut map-
ping with the diagonal-offset model [11]. Note that the reg-
ular gamut mapping algorithm could not find a solution for
approximately 10% of the images, and the reported perfor-
mance for this method only constitutes the images for which
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Method Mean Median
RG - Performance on 288 images 4.5◦ 2.7◦

RG+O 4.7◦ 3.1◦

Proposed: DG 4.7◦ 2.6◦

Grey-World 9.8◦ 7.0◦

White-Patch 9.2◦ 6.5◦

Shades of Grey 6.3◦ 3.9◦

Color by Correlation 9.9◦ 6.8◦

Table 1. Angular errors for several algorithms on the SFU data set,
containing 321 images. Note that the regular gamut mapping al-
gorithm (RG) did not find a solution for approximately 10% of the
images in this set. The reported performance for the RG algorithm
constitutes only those images for which a solution was found.

a solution was found. The regular gamut mapping with the
diagonal-offset model and the derivative-based gamut map-
ping methods both found a solution for all images in the
data set.

In conclusion, using the derivative-based gamut mapping
on a data set with only few disturbing imaging factors does
not deteriorate the performance compared to regular gamut
mapping.

Real-world data set. This set consists of images that are
captured using a camera with a grey sphere mounted on top.
There are 15 different scenes, both indoor and outdoor, and
each scene contains 10 images, resulting in a total of 150
image (see [5] for more information).

The results for this data set are shown in table 2. For
this data set, the advantages of the derivative-based gamut
mapping algorithm are more apparent. This data set is more
challenging since it contains images recorded under difficult
lighting settings like outdoor with a blue sky and bright sun-
light. Hence, it can be expected that the proposed method
performs better on such images than the regular gamut map-
ping, which can also be seen in table 2. The mean angular
error for the proposed derivative-based gamut mapping is
6.7◦ compared to 7.2◦ for the regular gamut mapping and
even 7.4◦ for the regular gamut mapping using the diagonal-
offset model. Further, the median angular error of the pro-
posed method is also lower.

To illustrate the output of the algorithms, results are
shown in figure 4. The first image shows the original un-
processed image. The second image shows how the image
looks like if the illuminant is perfectly estimated (for this
purpose, the ground truth is used), and the third and fourth
image depict the result of the derivative-based and regular
gamut mapping algorithms, respectively.

6. Conclusion
In this paper, gamut mapping has been extended to in-

corporate higher-order statistics (derivatives) to estimate the
illuminant. The use of higher-order statistics results in ro-

Method Mean Median
RG 7.2◦ 5.9◦

RG+O 7.2◦ 6.1◦

Proposed: DG 6.7◦ 5.2◦

Grey-World 8.2◦ 7.3◦

White-Patch 7.1◦ 6.7◦

Table 2. Angular errors for several algorithms on the real-world
data set.

bustness against deviations from the diagonal model and
diffuse light which can be modelled by an offset of the im-
age values

The derivative-based gamut mapping has the advantage
over the diagonal-offset model [11] that position dependent
(but low frequent) offsets are allowed. In the experimen-
tal section, we compared the proposed method with regular
gamut mapping and the diagonal-offset model. On the SFU
set all three methods obtained state-of-the-art results. On a
more challenging set containing real-world images the pro-
posed method outperformed the other approaches.
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