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Abstract

Within a computer vision context color naming is the
action of assigning linguistic color labels to image pixels.
In general, research on color naming applies the following
paradigm: a collection of color chips is labelled with color
names within a well-defined experimental setup by multiple
test subjects. The collected data set is subsequently used to
label RGB values in real-world images with a color name.
Apart from the fact that this collection process is time con-
suming, it is unclear to what extent color naming within a
controlled setup is representative for color naming in real-
world images. Therefore we propose to learn color names
from real-world images. Furthermore, we avoid test sub-
jects by using Google Image to collect a data set. Due to
limitations of Google Image this data set contains a sub-
stantial quantity of wrongly labelled data. The color names
are learned using a PLSA model adapted to this task. Ex-
perimental results show that color names learned from real-
world images significantly outperform color names learned
from labelled color chips on retrieval and classification.

1. Introduction
Color names are linguistic labels that humans attach to

colors. We use them routinely and seemingly without effort
to describe the world around us. They have been primar-
ily studied in the fields of visual psychology, anthropology
and linguistics [1]. Color naming is different from the thor-
oughly explored field of color imaging, where the main goal
is to decide, given an acquisition of an object with a cer-
tain color, if objects in other acquisitions have the same (or
a different) color. Based on physical or statistical models
of reflection and acquisition systems [2, 3, 4] object col-
ors can be described independent of incidental scene events
such as illuminant color and viewing angle. The research
question of color naming is different: given a color mea-
surement, the algorithm should predict with which color
name humans would describe it. It also allows for differ-
ent functionalities, for example within a content based re-

trieval context it allows to steer the search to objects of a
certain color name. The user might query an image search
engine for ”red cars”.The system recognizes the color name
”red”, and orders the retrieved results on ”car” based on
their resemblance to the human usage of ”red’. Apart from
the retrieval task color names are applicable in automatic
content labelling of images, colorblind assistance, and lin-
guistic human-computer interaction [5].

One of the most influential works in color naming is the
linguistic study of Berlin and Kay [6] on basic color terms.
They are defined as those color names in a language which
are applied to diverse classes of objects, whose meaning
is not subsumable under one of the other basic color terms,
and which are used consistently and with consensus by most
speakers of the language. Basic color names were found to
be shared between languages. However the number of basic
terms varies from two in some Aboriginal languages to 12
in Russian. In this paper, we use the 11 basic color terms
of the English language: black, blue, brown, grey, green,
orange, pink, purple, red, white, and yellow.

To use color naming for computer vision a mapping be-
tween the RGB values and color names is required. Gen-
erally this mapping is inferred from a labelled set. Multi-
ple test subjects are asked to label hundreds of color chips
within a well-defined experimental setup [7, 8, 9, 10]. The
colors are to be chosen from a preselected set of color names
(predominantly the set of 11 basic color terms [8, 10] ).
From this labelled set of color chips the mapping from RGB
values to color names is derived. Throughout the paper
we will refer to this methodology of color naming as chip-
based color naming.

We do not wish to cast doubt on the usefulness of chip-
based color naming within the linguistic and color science
fields, however it might be questioned to what extent the
labelling of isolated color chips resembles color naming in
the real-world. Color naming chips under ideal lighting on
a color neutral background greatly differs from the chal-
lenge of color naming in the real-world without a neutral
reference color and with physical variations such as shad-
ing effects and different light sources. Another disadvan-



black blue brown green grey orange pink purple red white yellow

Figure 1. Google-retrieved examples for color names. The red bounding boxes indicate false positive images. The same images can be
retrieved with various color names, such as the flower image which appears in the red and the yellow set.

tage of chip-based color naming is its inflexibility with re-
spect to changes of the used color name set. This is caused
by the demanding experimental setup necessary for chip-
based color naming. Changing the set by adding for exam-
ple beige, violet or olive, would imply rerunning the exper-
iment for all patches.

We propose an alternative method to color naming. To
overcome, at least to some extent, the limitations of chip-
based color naming, we propose to learn color names from
real-world images. Furthermore, to design a flexible sys-
tem with respect to variations in the color name set, we
propose to automatically learn the color names from im-
ages retrieved from Google image search (see Fig. 1). The
use of image search engines to avoid hand labelling was
pioneered by Fergus et al. [11]. Retrieved images from
Google search are known to contain many false positives.
To learn color names from the Google images we propose to
use Probabilistic Latent Semantic Analysis (PLSA), a gen-
erative model introduced by Hofmann [12] for document
analysis. This model was recently applied to computer vi-
sion by [13], [14], [15]. We model RGB values (words) in
images (documents) with mixtures of color names (topics),
where mixing weights may differ per image but the top-
ics are shared among all images. In conclusion, by learning
color names from real-world images, we aim to derive color
names which are applicable on challenging images typi-
cal in computer vision applications. In addition, since its
knowledge on color names is derived from an image search
engine, the method can easily vary the set of color names.

Our method is closely related with work on finding rela-
tions between words and image regions. Barnard et al. [13]
proposed a method to learn the joint distribution between
words and image regions. The original work which was
limited to nouns was later extended to also include adjec-
tives by Yanai and Barnard [16]. They compute the ”visual-
ness” of adjectives, based on the entropy between adjectives

and image features. The work shows among other adjec-
tives results for color names: several of these are correctly
found to be visual, however the authors also report failure
for some color names. Contrary to this work, we start from
the prior-knowledge that color names are ”visual” and that
they should be learned from the color distributions (and not
for example from texture features), with the aim to improve
the quality of the learned color names.

This paper is organized as follows. In Section 2, the
color name data sets used for training and testing are pre-
sented. In Section 3, several color related issues are dis-
cussed. In Section 4, our approach to learning color names
from images is presented. In Section 5, experimental results
are given, and Section 6 finishes with concluding remarks.

2. Color Name Data Sets

For the purpose of learning color names from real-world
images, a set of labelled images is required. We use
three data sets, two of which were collected specifically for
the work presented here and are made available online at
http://lear.inrialpes.fr/data, we briefly describe them below.
Google color name set: Google image search uses the
image filename and surrounding web page text to retrieve
the images. As color names we choose the 11 basic color
names as indicated in the study of Berlin and Kay [6]. We
used Google Image to retrieve 100 images for each of the
11 color names. For the actual search we added the term
”color”, so for red the query is ”red+color”. Examples for
the 11 color names are given in Fig. 1. Per color name there
are on average 19 false positives, i.e., images which do not
contain the color of the query. Furthermore in many cases
only a small portion, as little as a few percent of the pixels,
represents the color label. Our goal is to arrive at a color
naming system based on the raw results of Google image,
i.e., we used both false and true positives.



Figure 2. Examples for the four classes of the Ebay data set: blue cars, grey shoes, yellow dresses, and brown pottery. For all images masks
with the area corresponding to the color name are hand segmented. One example segmentation per category is given.

Ebay color name set: To test the color names a human-
labelled set of object images is required. We used images
from the auction website Ebay. Users labelled their objects
with a description of the object in text, often including a
color name. We selected four categories of objects: cars,
shoes, dresses, and pottery (see Fig. 2). Of each object cat-
egory 110 images where collected, 10 for each color name.
The images contain several challenges: the reflection prop-
erties of the objects differ from matt reflection of dresses to
highly specular surfaces of cars and pottery. Furthermore,
it comprises both indoor and outdoor scenes. For all im-
ages we hand-segmented the object areas which correspond
to the color name. In the remainder of the article when re-
ferring to Ebay images, only the hand segmented part of the
images is meant, and the background is discarded.

Chip-based color name set: In the experimental Section
we compare our method to a chip-based approach. For this
purpose we use the data set of color named chips of Be-
navente [10], which is available online. The set contains
387 patches which were classified into the 11 basic color
terms by 10 subjects. If desired the color patch could be
assigned to multiple color names. Thus every patch is rep-
resented by its sRGB values (standard default color space)
and a probability distribution over the color names. To ar-
rive at a probability over the color names, z, for all L∗a∗b∗-
bins (we use the same discretization as is applied in our al-
gorithm), we assign to each L∗a∗b∗-bin, w, the probability
of the neighbors according to

P (z |w ) ∝
N∑

i=1

P (z |wi ) gσ
(
|wi − w|LAB

)
(1)

where the wi’s are the L∗a∗b∗-values for the color chips and
N is total number of chips. P (z |wi ) is given for all the
color chips. The distance between the color chips, wi, and
w is computed in L∗a∗b∗-space. For the weighting kernel
we use a Gaussian with σ = 5, which has been optimized
to get the best results on the retrieval task of Section 5.1.

3. Color Considerations

The images are represented in the form of color his-
tograms to the learning algorithm. We consider the images
from the Google and Ebay data sets to be in sRGB for-
mat. Before computing the color histograms these images
are gamma corrected with a correction factor of 2.4. Al-
though images might not be correctly white balanced, we
refrained from applying a color constancy algorithm. This
is motivated by the fact that state-of-the-art color constancy
often gives unsatisfying results [17]. Furthermore, many
Google images lack color calibration information, and reg-
ularly break assumptions on which color constancy algo-
rithms are based. For example many of the images consist
of single colored objects on a background, for which most
color constancy methods fail.

For the color histograms we considered several color
spaces: RGB, HSL, and L∗a∗b∗. HSL is attractive because
of its axis-alignment with photometric variations [7, 18].
Decision on chromatic versus achromatic colors can be
based on luminance and saturation, whereas chromatic col-
ors can be distinguished based on hue and saturation. Yet,
some colors have the same hue but different intensities, e.g.,
orange and brown. To efficiently use HSL the subspace of
the HSL-space in which the color name is located should
be given as extra information. This is opposite to our aim
to automatically learn the color names from Google im-
ages. The L∗a∗b∗ color space instead seems like an ap-
propriate choice, as it is perceptually linear, meaning that
similar differences between L∗a∗b∗ values are considered
about equally important color changes to humans. This is
a desired property because the uniform binning we apply
for histogram construction implicitly assumes a meaningful
distance measure. To compute the L∗a∗b∗ values we as-
sume a D65 white light source. Note that the L∗a∗b∗ color
space is not photometrically invariant. Changes of the in-
tensity influence all three coordinates. By choosing to learn
the color names in the L∗a∗b∗-space we hope that the ”par-
tial” photometric invariance of color names is acquired in
the learning phase. In our experiments we show that within
our context the L∗a∗b∗-space indeed outperforms both the
RGB and HSL-space.



4. Learning Color Names
The learning of the color names is achieved with the

PLSA model [12]. The PLSA model is appropriate since
it allows for multiple ”classes” in the same image, which
is the case in our Google data set. In analogy with its use
in text analysis, where the PLSA model is used to discover
topics in a bag-of-word representation, we here apply it to
discover colors in a bag of pixels representation, where ev-
ery pixel is represented by its L∗a∗b∗ value. In order to
use the PLSA model we discretize the L∗a∗b∗ values into a
finite vocabulary by assigning each value by cubic interpo-
lation to a regular 10 × 20 × 20 grid in the L∗a∗b∗-space1.
An image (document) is then represented by a histogram in-
dicating how many pixels are assigned to each bin (word).

4.1. Generative Models: PLSA and PLSA-bg

In text analysis the PLSA model is used to find a set of
semantic topics in a collection of documents. Here we use
the model to find a set of color names (comparable to the
topics in documents) in a collection of images. The use
of generative models to learn the relation between images
and words was first proposed by Barnard et al. [13]. They
apply Latent Dirichlet Allocation (LDA) to learn relations
between words and image blobs. We start by explaining the
standard PLSA, after which we propose an adapted version
suited to our problem. We follow the terminology of the
text analysis community.

Given a set of documents D = {d1, ..., dN} each de-
scribed in a vocabulary W = {w1, ..., wM}, the words are
taken to be generated by latent topics Z = {z1, ..., zK}. In
the PLSA model the conditional probability of a word w in
a document d is given by:

P (w| d) =
∑

z∈Z

P (w| z)P (z| d) . (2)

Both distributions P (z|d) and P (w|z) are discrete, and can
be estimated using an EM algorithm [12]. This standard
PLSA model does not exploit the labels of the images. The
topics are hoped to converge to the desired color names. As
is pointed out in [19] this is rarely the case. To overcome
this shortcoming we propose an adapted PLSA model.
PLSA-bg: We propose to model an image d as being gener-
ated by two distributions: the foreground distribution which
is determined by its color name label ld and the background
distribution which is shared between all images:

P (w |d, ld = z ) = αdP (w |ld = z )+(1− αd)P (w |bg ) ,
(3)

where P (w |ld = z ) is the probability that the word is
generated by topic ld. We use the following shorthands:

1The difference in bins is caused by the different domains. The inten-
sity axis ranges from 0 to 100, the chromatic axes range from -100 to 100.

P (w |d, ld = z ) = pwd, P (w |z ) = βwz and P (w |bg ) =
θw. To learn the model we need to estimate the mixing pro-
portion of foreground versus background α, the color name
distributions β, and the background model θ. With each
word in each document we associate a hidden variable with
two states, that indicates whether the word was drawn from
the foreground topic or the background topic. The posterior
on the states is calculated as:

qfg
wd = αdβwz

pwd
(foreground),

qbg
wd = 1− qfg

wd = (1−αd)θw

pwd
(background).

(4)

By maximizing the complete data log-likelihood

Q =
∑

w,d

cwd

(
qfg
wd log αdβwld + qbg

wd log (1− αd) θw

)
,

(5)
and given the q’s, we can re-estimate the parameters:

αd =

[∑
w

cwd

]−1 ∑
w

cwdq
fg
wd

= αd

[∑
w

cwd

]−1 ∑
w

cwd

pwd
βwz,

(6)

and after updating pwd with the new α’s:

βwz ∝
∑

d: ld=t

cwdq
fg
wd = βwz

∑

d: ld=t

αd
cwd

pwd
, (7)

θw ∝
∑

d

cwdq
bg
wd = θw

∑

d

(1− αd)
cwd

pwd
, (8)

where Dt is the set of documents for which label ld is equal
to t, and cwd is the normalized word count per document.
The method can be extended to allow for multiple shared
background topics. However, we found that increasing the
number of background topics did not improve performance.
Predicting color names: We will apply the derived word-
topic distributions to assign color name probability to image
pixel values. Two ways to assign color names to individual
pixels are considered: based only on the pixel value, indi-
cated by PLSA-bg, or by also taking the region of the pixel
into account, abbreviated with PLSA-bg∗. The probability
of a color name given a pixel is

PLSA− bg : P (z |w ) ∝ P (z)P (w |z ) , (9)

where the prior over the color names is taken to be uniform.
The probability of a color name given the region is com-
puted with

PLSA− bg∗ : P (z |w, d ) ∝ P (w |z )P (z |d ) , (10)

where P (z |d ) is estimated using an EM algorithm by tak-
ing the word topic distribution P (w |z ) fixed. The back-
ground topic is disregarded in this phase, since we know



that the 11 color names describe the whole RGB cube. The
difference between the two methods is that for PLSA-bg∗

first a distribution over the color names given the region is
computed P (z|d). This distribution is subsequently used as
a prior over the color names in the computation of the prob-
ability of a color name given a pixel value and the region.
In the context of scene classification, Quelhas et al. [15]
also consider these two methods to compute the conditional
probability of topics given a word. They found retrieval re-
sults to improve by taking P (z|d) into account.

To arrive at a probability distribution over the color
names for an image region (e.g., the segmentation masks
in the Ebay image set) we use the topic distribution over the
region P (z |d ) described above for PLSA-bg∗. For PLSA-
bg the probability over the color names for a region is com-
puted by a simple summation over all pixels in the region of
the probabilities P (z|w), computed with Eq. 9 using a uni-
form prior. Both PLSA-bg and PLSA-bg∗ will be compared
in the experimental section on their usefulness for retrieving
colored objects and assigning color names to pixels.

5. Experimental Results
In the introduction we argued against learning color

names in a different setup than in which they are applied.
Therefore, we propose a method which learns color names
from real-world images. Furthermore, to arrive at a flexible
method with respect to variations in the color name set we
propose to learn the color names from Google images. In
the experiments the proposed method is compared to a chip-
based method (see Section 2). We evaluate them based on
color object retrieval, and on the assignment of color names
to pixels. Furthermore, we illustrate the flexibility of our
method when changing the set of color names.

To verify our learning approach we compare PLSA-bg
learning with two alternatives. Firstly, a standard PLSA
with 11 topics. With random initialization the topics rarely
coincided with the color names, and the method performed
poorly. A better way to initialize the word-topic distribu-
tions P (w|z) is to average for each topic the empirical dis-
tribution over words of all documents labelled with the class
associated with that topic. Secondly, a linear support vector
machine [20], which is trained on the L∗a∗b∗ histograms of
the Google images. In retrieval we classify the histograms
of the segmented regions, and derive a probability over the
color names from the SVM scores (Section 5.1). For indi-
vidual pixel classification (Section 5.2), the SVM classifies
histograms of individual pixels. 2

5.1. Retrieving Objects by Color

The different approaches to color naming are evaluated
on retrieval of colored objects within each category. For

2Cubic interpolation maps the color value of a pixel to multiple bins.

method RGB HSL L∗a∗b∗

EER 94 93 95

Table 1. Equal error rates on Ebay set of the PLSA-bg∗ method,
learned on Google images based on three different color spaces.

method train-set cars shoes dresses pottery overall

chip-based - 88 93 94 91 92

SVM Google 91 96 96 91 94

PLSA Google 89 95 94 92 93

PLSA-bg∗ Google 91 96 99 93 95

PLSA-bg Google 92 97 99 95 96

PLSA-bg∗ Google+Ebay 92 96 99 95 96

PLSA-bg Google+Ebay 92 97 100 94 96

Table 2. Average equal error rates for retrieval on Ebay images.

example, the car category is queried for ”red cars”. We
query the four categories of the Ebay set (see Section 2)
for the 11 color names. The images are retrieved based on
the probability of the query color given the Ebay images.
For the Ebay images only pixels within the segmentation
masks are considered. To assess the performance we com-
pute the equal error rate (EER) for each query. The average
EER’s over the 11 color names are reported for each cat-
egory in Table 2. The learning of the color names is per-
formed on the weakly labelled Google images, or a com-
bination of the Google and Ebay images. In the case of
the combined Google and Ebay images the Ebay category
which is queried is left out in training.

We first verify our choice of color space. The results for
retrieval based on three color spaces are given in Table 1. As
expected the L∗a∗b∗-space slightly outperforms the other
color spaces. In the remainder of the article only results
based on the L∗a∗b∗-space are reported.

The results of the various color naming methods are
summarized in Table 2. The results support our idea that
learning color names from real-world images is sensible: all
learning methods outperform the chip-based method for all
four categories. Secondly, results show that it is possible to
learn the color names from highly polluted images retrieved
with an image search engine. Thirdly, the proposed adap-
tations of the PLSA model are beneficial: they obtain sig-
nificantly better results than both standard PLSA and SVM.
Extending the training set with the Ebay images did not im-
prove results over training on Google images only.

5.2. Pixelwise Color Name Classification

As a second experiment, the color naming methods are
compared on classification of pixels in the Ebay images. All
pixels within the segmentation masks are assigned to their



(a) (b) (c) (d)

Figure 3. (a) A challenging synthetic image: the RGB values at the border rarely occur in natural images. Results obtained with (b)
PLSA-bg learned on Google images, (c) SVM learned on Google and Ebay, and (d) PLSA-bg learned on Google and Ebay.

method train-set cars shoes dresses pottery overall

chip-based - 39 60 62 50 53

SVM Google 45 61 68 56 62

PLSA Google 48 69 71 62 63

PLSA-bg∗ Google 63 84 89 74 78

PLSA-bg Google 51 71 81 66 67

PLSA-bg∗ Google+Ebay 68 88 93 80 82

PLSA-bg Google+Ebay 53 73 84 71 70

Table 3. Pixel classification in percentages for Ebay images.
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black 78 1 2 19

blue 3 90 4 3

brown 6 67 16 1 8 2

grey 3 5 87 5

green 4 1 1 9 81 4

orange 5 80 2 13

pink 6 1 78 9 2 4

purple 12 1 1 13 4 67 0 2

red 2 4 94

white 12 1 87

yellow 1 1 2 96

Table 4. Confusion matrix for pixel classification based on
PLSA-bg∗ learned on Google and Ebay. The overall classification
rate is 82% as given in Table 3.

most likely color name according to arg maxz P (z |w ).
Only for PLSA-bg∗ we take the surrounding of the pixel
into account: we use arg maxz P (z |w, d ) to classify the
pixel, where the segmentation mask forms the document.

In Table 3 the results are presented. For this task the gain
in learning color names from real-world images is impres-
sive: where the chip-based method classifies only 53% of
the pixels correctly, the PLSA-bg∗ obtains a result of 82%.
Again the proposed method outperforms standard PLSA

and linear SVM. For this task, adding the Ebay images to
the training data improved the overall classification rate for
PLSA-bg∗ from 78% to 82%.

We believe that the difference in performance of PLSA-
bg∗ and PLSA-bg methods in retrieval and pixel classifi-
cation is caused by the fact that the PLSA-bg∗ couples the
topic assignment of pixels within an image. This proved
to be beneficial for pixel classification. On the other hand
when using an image specific topic distribution, the correct
classification of small regions in an image may be hindered
in the presence of a large region of a similar color in the
same image (e.g., a small orange region within a domi-
nantly yellow image). Retrieving this image on the color
name of the small color region (in the example orange) will
result in deteriorated retrieval performance. This explains
the slightly worse retrieval results for PLSA-bg∗. This con-
trasts results in [15], where taking the topic-document dis-
tribution into account proved beneficial for retrieval of man-
made versus landscape images.

To give some insight into the errors made in color nam-
ing we show the confusion matrix of the pixel classifica-
tions based on PLSA-bg∗ in Table 4. Most confusions are
reasonable: confusions between achromatic colors (white-
grey and black-grey), between colors and achromatic colors
(purple-black, purple-grey, brown-grey) or between very
similar colors (red-orange, pink-purple).

In Fig. 3 a challenging image shows that the color names
learned from the Google images alone are still inaccurate
for some highly saturated colors (see Fig. 3b). These colors
occur rarely in natural images, because they require one of
the color channels to be near zero. Color names learned
from the combined set of Google and Ebay images pro-
vide reliable results even for highly saturated colors (see
Fig. 3d).

The PLSA-bg model learned on the Google
and Ebay images is available online at
http://lear.inrialpes.fr/people/vandeweijer/color names.html,
in the form of a 32 × 32 × 32 lookup table which maps



sRGB values to probabilities over color names.
Limitations of Chip-Based Color Naming: For both re-
trieval and pixel classification color names learned from
real-world images outperformed chip-based color naming.
Here we analyze the reasons underlying this difference.

We used the PLSA-bg color naming model learned
on Google and Ebay images to classify the color chips
from [10]. Amazingly, for 77 out of 387 chips (20%) our
method appointed a color name to the chip which was not
matched by any of the test subjects. However, 24 of these
concern disagreement between achromatic colors, primar-
ily caused by grey-labelled chips which were classified by
PLSA-bg as white. For 51 color chips, labelled with chro-
matic color names, our method appointed achromatic color
names. Only in two cases there was disagreement between
chromatic colors (orange-yellow, pink-brown). In conclu-
sion, differences in color naming mainly occur for low sat-
urated colors, which in a laboratory setup on a neutral back-
ground are often considered as chromatic. However, in real-
world images these colors are more often caused by inter-
reflection, or variations of the light source. By learning the
color names from real-world images, slight deviations from
perfect grey are not attributed to chromatic colors. Several
examples of color name assignments for chip-based, PLSA-
bg and PLSA-bg∗ are depicted in Fig. 5. Other than in the
earlier experiment we classify all pixels in the image.

5.3. Flexibility Color Name Data Set

Another drawback of chip-based color naming is the in-
flexibility with respect to changes of the color names set.
An search engine based method is more flexible, since the
collection of data is only several minutes of work. In Fig. 4
we show prototypes of the 11 basic color terms based on the
patches of the chip-based data set. The first row shows the
prototypes computed using the human assigned labels and
the second row the prototypes based on the labels assigned
by our method. The prototype of a color name is computed
by averaging the RGB values of all color chips for which
the color name is the most likely. The learned color names
from Google have a great visual resemblance with the pro-
totypes based on the human labelled color chips.

Next, we give two examples of varied color name sets.
Mojsilovic, in her study on color naming [9], mentions the
use of the color names beige, violet and olive, in addition
to the 11 basic color terms. For these three classes we re-
trieved 100 images each, and re-learned the color names
for the 14 color terms. The prototypes of the three newly
added colors together with a few of the closely related color
names are depicted in the bottom row of Fig.4. The newly
injected color names also influence the position of the old
color names, as can be seen in the slight color shift of the
brown and the pink prototype.

As a second example of flexibility we look into inter-
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Figure 4. First row: prototypes of the 11 basic color terms based on
chip-based color naming. Second row: prototypes of the 11 basic
color terms learned from Google images based on PLSA-bg. Third
row shows results on a varied set of basic color terms (left and mid-
dle group): prototypes of several of the color names learned from
Google images using 14 color names: the 11 basic color terms ex-
tended with beige, olive and violet. Third row (group to the right):
prototypes of the two Russian blues learned from Google images.

linguistic differences in color naming. The Russian lan-
guage is often mentioned as one of the few languages which
has 12 basic color terms. The color term blue is split up in
two: goluboi (goluboĭ), and siniy (siniĭ). We ran the
system on 30 images for both blues, returned by Google
image. Results are given in Fig.4, and correspond with the
fact that goluboi is a light blue and siniy a dark blue. The
example shows internet as a potential source of data for the
examination of linguistic differences in color naming.

6. Discussion and Conclusions

We have presented a new method for color naming. It
breaks with the generally accepted approach to learn color
names from isolated color chips in a laboratory setting. Fur-
thermore, to obtain a method for which it is easy to vary the
set of desired color names, we proposed to learn the color
names from Google image. Results show that within the
context of computer vision the learning of color names from
real-world images is beneficial. The improvement is espe-
cially striking in classification of pixels with color names
where results go up from 53% to 82%. Furthermore, the
flexibility of the method with respect to varying color name
sets has been illustrated.

In a wider context this article can be seen as a case study
for the automatic learning of visual attributes. In recent
years the computer vision community has achieved signif-
icant progress in the field of object and object category
recognition. Now that it is possible to detect objects such
as people, cars, and vases in images, the question arises if
we are able to retrieve small people, striped vases, and red
cars. The scope of these so called visual attributes is vast:
they range from size descriptions, such as large, elongated,
and contorted, to texture descriptions such as striped, reg-
ular, and smooth, further on to color descriptions, such as
red, cyan and pastel. The challenges which arise in the de-
velopment of an automatic color naming system can be seen
as exemplar for the problems which arise for visual attribute



Figure 5. Four examples of pixelwise color name classification. For each example the results of chip-based, PLSA-bg, PLSA-bg∗ are given
successively. Left top: without reference color it is very hard to classify the achromatic colors black, grey and white. As a result the white
car is considered grey by the chip-based method. Right top: although the pixel values are slightly greenish, the mug is human labelled as
being grey. The slight deviation from grey led to the wrong color label green for the chip-based method. Bottom left: Here some blue
pixels were wrongly classified as green, because the 387 color chips sample some areas of the RGB-cube only sparsely. In this example,
PLSA-bg∗ suppresses the small red topic, consequently parts of the strawberries are wrongly considered brown. Bottom right: all methods
correctly classify the dress pixels. The chip-based method appoints chromatic color names to the low saturation background.

learning at a large. The labelling of images with the inex-
haustible set of existing visual attributes will be unfeasible,
and automatic ways to learn them are needed.
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