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Abstract— During nighttime high beams are sparsely used
by drivers even when required by the traffic situation. Thus,
the intelligent automatic control of vehicles’ headlight is of
great relevance. Since dazzling other drivers must be avoided,
detection of oncoming and preceding vehicles is required. The
detection must reach such a long distance that only camera
based approaches are reliable. In this case, to detect a vehicle
means identifying its head or tail lights. The main challenge is
to distinguish these lights from reflections due to infrastructure
elements. In order to confront such a challenge we have
developed a nighttime vehicle detection system whose core is a
novel classifier–based module which can label each detected
target as vehicle or non–vehicle. However, in general it is
unrealistic to assume a classifier, or a set of them, providing
the perfect detection rate and no false alarms. Therefore, we
propose to explore the temporal coherence of the targets clas-
sification. The usual approach to implement such a coherence
analysis requires multi–target tracking. However, tracking is
itself a non error–free difficult task. Thus, in this paper we
present a different alternative which doesn’t require tracking.
In particular, we propose a novel confidence accumulation space
where the different targets vote according to a confidence value
they obtain from the classifier–based module. Targets reaching
a predefined threshold in that space are labelled as vehicle and
they keep this label according to a hysteresis process. Current
results show that this space allows to properly classify clear
targets using one single frame, while only a few frames are
required for those targets whose type is more difficult to discern.

I. INTRODUCTION

The fatal crash rate for nighttime driving is three to four
times that of daytime, even though the traffic volume is
substantially less [1]. In order to be warned early about
hazards, drivers need to look far ahead to see traffic signs,
road geometry, other vehicles, etc. Accordingly, the head-
light system of a vehicle has the aim of providing a safe
illumination for driving. The most common system in the
market is based on the manual switching between low and
high beams. In absence of fog, drivers should use high beams
under poor ambient lighting but without disturbing others.
However, high beams are used less than 25% of the time
in which driving conditions justify their use [2], probably
because drivers are afraid of dazzling others by mistake.
Thus, our motivation is to develop an intelligent headlight
controller for freeing the driver of such a task.

By detecting oncoming and preceding traffic, different
headlight systems of increasing capabilities can be designed
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Fig. 1. Top: traditional low beams reach short distances (' 70 m) while
high beams are used for large ones (≥ 150 m). Middle: the headlight touches
the closest vehicle in front, i.e., the illumination distance is increased with
respect to low beams but without glaring other drivers. Bottom: using arrays
of LEDs a dazzle–free illumination of the whole scene will be possible.

Fig. 2. For touching a detected vehicle with our own light but without
glaring its driver, it is sufficient to orientate the light cone according to
an angle θ such that the upper part of the cone remains parallel to the
detection line. This can be done using a single camera whose axes are
calibrated with respect to the headlamp ones. Since the head/tail lights of
oncoming/preceding vehicles will be image blobs classified as vehicle, the
position of these blobs in the image determines θ . Thus, the distance to the
detected vehicles is not required for adjusting the headlamps.

(Fig. 1). The simplest idea is the automatic switch between
low and high beams [3]. A more advanced concept consists in
dynamically adapting the position of the illumination cut–off
just below the closest detected vehicle [4]. Using arrays of
LEDs, future headlight systems will employ a fully variable
light distribution to realize a dazzle–free high beam [5].

Hence, nighttime vehicle detection will be at the core of
any future intelligent headlight controller. In order to avoid
dazzling other drivers, oncoming vehicles must be detected
up to at least 600 m ahead and preceding ones up to at
least 400 m. Such a long distances rule out active sensors
as radar or lidar. Fortunately, vehicle detection at nighttime
can be based on vision sensors. In fact, a monocular system
is sufficient (Fig. 2), which opens the possibility of using
the same hardware for more automotive applications as lane
departure warning or traffic sign recognition, at a low cost.
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Fig. 3. Left–Middle: nighttime scene imaged with high beams off and on,
respectively. Notice how clear is the presence of close poles and traffic signs
because of the reflection of the light emitted by the high beams of the car
hosting the camera. Right: the energy level of these reflections in the image
is equal or higher than the one of mid to far distance head and tail lights
of other vehicles.

Our aim is to develop a real–time vehicle detector based
on a monocular vision system, placed behind the windshield
forward facing the road. Since reddishness is a relevant cue
to detect taillights, we assume the image sensor has pixels
that capture only red light, e.g., traditional Bayer patterns.
But we also assume that the acquisition hardware must not
be especially customized for that task as in [3], rather it must
be sufficiently general as to allow the incorporation of other
driving assistance applications. To the best of our knowledge
there is not such a system in the market.

Vehicle detection at nighttime consists, in fact, in detecting
the corresponding head or tail lights, thus, it may seem a
question of simple image thresholding. However, such an
intuition underestimates the actual difficulty of the problem:
it turns out that the own emitted light is reflected in different
infrastructure elements such as traffic signs, fences, poles,
etc., in a way that are difficult to distinguish from mid to
far distance vehicle lights (Fig. 3). In order to tackle this
problem currently we focus on appearance analysis.

More specifically, we have designed a classifier–based
module which takes into account that far away lights look
different than close ones, as well as that head and tail
lights look different too. The involved classifiers only use
single frame appearance features. The resulting classification
performance is quite remarkable. However, it is unrealistic
to assume a perfect detection rate and no false alarms.
Therefore, we propose to explore the temporal coherence
of the targets classification.

The usual approach to implement such a coherence analy-
sis involves some sort of multi–target tracking. However,
tracking is itself a non error–free difficult task. Thus, in this
paper our focus is to present a different alternative which
doesn’t require tracking. In particular, we propose the use
of a novel confidence accumulation space (CAS) where the
different targets vote according to a confidence value they
obtain from the classifier–based module. This confidence can
be understood as a degree of resemblance to a vehicle light,
thus, targets reaching a predefined threshold in the CAS
are labelled as vehicle and they keep the label according
to a hysteresis process. Confidence is spread in the CAS
according to the expected frame–to–frame motion of the
detected targets. Current results show that the CAS allows to

Fig. 4. Vehicle detection pipeline for nighttime images. Currently, the
candidate classification is performed using appearance cues and outputs a
confidence value for each candidate. Such a value can be understood as a
degree of resemblance to a vehicle light.

properly classify clear targets using one single frame, while
only a few frames are required for those targets whose type
is more difficult to discern, i.e., for targets prone to produce
misdetections and false alarms.

The paper is organized as follows. Section II briefly
introduces the proposed classifier–based module and defines
the concept of confidence. Section III draws the main focus
of the paper, i.e., the temporal coherence analysis. Results
are commented in Section IV. Finally, Section V summarizes
the main conclusions.

II. VEHICLE DETECTION AT NIGHTTIME

At nighttime vehicles are not seen as a whole object since
only their head and tail lights are perceived (Fig. 3). There-
fore, as we have already mentioned, the main challenge being
to distinguish mid to far distance vehicle lights from the
own emitted light that is reflected in different infrastructure
elements. In order to confront this challenge one can think
in both motion and appearance analysis. Since appearance
analysis will allow single frame detection for clear targets,
we decided to take it as the core of the system to develop,
but without discarding motion analysis as a complement to
explore in future work. We follow the processing pipeline of
Fig. 4. The last module, temporal coherence analysis, is the
focus of this paper, thus we detail it in Sect. III. The rest of
modules are briefly summarized in the following, however,
for a more detailed description we refer to [6].

A. Candidate Selection

Thresholding and connected component analysis is used
to obtain a set of blobs, the candidates, which must be later
classified as vehicle or non–vehicle. In order not to miss far
away targets a low threshold must be used, but it must not be
too low if we do not want to have many irrelevant blobs that
could slow down the processing. Currently we use 30%Mg,
being Mg the maximum grey–level reachable by a pixel. It
is worth to mention that the simplicity of this step is crucial
for the system running in real–time.



B. Candidate Classification

Early work on this application revealed that no single
appearance feature is sufficient to distinguish vehicle blobs
from others. There are some features expected to be espe-
cially useful like the maximum grey level, or some measure
of reddishness, but they are not sufficient. Thus, our approach
has been to define a set of potentially useful blob appearance
features of different types (binary, grey–level, color, pairing)
and using Real–AdaBoost [7] as learning machine to obtain
linear discriminative classifiers. In particular, we take into
account evident differences in the class of vehicle lights to
split its variability beforehand by building different classi-
fiers: small and non–small blobs look different, as well as
head and tail lights. As a result of this approach we trained
four basic classifiers:

• Ch,s: for detecting oncoming vehicles at mid to far
distances (h stands for headlight and s for small blobs);

• Ch,ns: for detecting oncoming vehicles at close to mid
distances (ns stands for non–small blobs);

• Ct,s: for detecting preceding vehicles at mid to far
distances (t stands for taillight);

• Ct,ns: for detecting preceding vehicles at close to mid
distances.

Following a conservative approach, i.e., better a false vehicle
than missing a true one, the four classifiers are applied to
each blob coming from the candidate selection, then we take
the maximum value1 of the four outputs. This maximum
value can be used to take the decision of labelling the blob
as vehicle or non–vehicle. Besides, if this maximum comes
either from Ch,s or Ch,ns, then the blob can be additionally la-
belled as headlight–like, or as taillight–like otherwise. Figure
5 presents the performance of the classifiers using the sign of
their output. The results confirm that the most difficult targets
to distinguish are mid to far distance preceding vehicles2.
Of course, we can do further work to try to improve these
performances, however, it is unrealistic to assume classifiers
providing the perfect detection rate and no false alarms.

Accordingly, our proposal consists in transforming the
classifiers’ output in what we call confidence value, which
can be understood as a degree of resemblance to a vehicle
light. These confidences are integrated in time by the tem-
poral coherence analysis explained in Sect. III.

In order to obtain these confidences we discretize the
classification values so that they are translated to pre–
defined weights. Let c be a classification value, then the

1The Real–AdaBoost discriminative rule yields a number whose sign
indicates whether the evaluated candidate is of the modelled class (+)
or not (-), and whose absolute value acts as a degree of confidence on
the classification. In our classifiers, positive values indicate that the blob
resembles a vehicle light and negative values just the opposite.

2To meet the demands of all applications that must share the same
acquisition hardware a horizontal opening angle of more than 40◦ is
required. Currently we use an image sensor of 752×480 pixels such that a
taillight with a size of 10×10 cm2 at a distance of more than 100 m would
be imaged by less than one pixel. Fortunately, the emitted light forms a
bigger cone so that a taillight at 400 m hits areas of about 4 to 10 pixels,
however, this is still challenging.

Fig. 5. Performance of the classifiers according to the sign of their
output. For learning the classifiers we labelled about 12000 headlights,
31000 taillights, 18500 traffic signs and 14000 poles/fence reflectors, from
sequences with many different scenarios around Barcelona city. For testing,
i.e., to obtain the performance presented here, we labelled an analogous
number of blobs but using sequences taken around Wolfsburg city.

Fig. 6. Thresholds (t) for Eq. (1) so that no samples of the testing set
are wrongly classified. The performance using these thresholds is still over
90% for non–small blobs. The performance of the classifiers with these
thresholds suggests we set the weights (w) trusting a lot the classifier for
non–small headlights, i.e., Ch,ns, followed by Ct,ns,Ch,s and Ct,s.

corresponding weight w is assigned following:

ω =





ω+ if c≥ t+
ω0 if t0 ≤ c < t+
ω− if t− ≤ c < t0
0 if c < t−

, (1)

where the t+, t0 and t− are thresholds that must be set for each
classifier, while the ω+,ω0 and ω− are the corresponding
weights that must be also defined for each classifier. Over
t+ we are confident about classifying a blob as vehicle,
and below t− about classifying a blob as non–vehicle. We
consider the range from t− to t+ as a non conclusive output
of the classifier. From t− to t0 the blob is assumed to be
more similar to a non–vehicle light while from t0 to t− it is
assumed to be more similar to a vehicle light. In particular,
we are using the thresholds shown in Fig. 6.

Now, let g be the maximum grey level of a given blob
after normalizing by Mg. Then, as confidence for that blob
we propose:

υ = ω×g , (2)

where ω is the weight assigned to the blob, i.e., applying Eq.
(1) to the maximum classification value reached by the blob
using the four basic classifiers. Thus, we follow the scheme
confidence = classification evidence × physical evidence.
Close vehicles are expected to produce brighter blobs in the
image than far away ones. Hence, blobs classified as vehicle



and corresponding to close vehicles will have a very high
confidence. If the vehicle is further away, the confidence will
be high but lower. A bright blob coming from a reflection
can have a not too high confidence if it is properly classified,
and this confidence will be even lower if the reflection comes
from an infrastructure element which is far away.

III. TEMPORAL COHERENCE ANALYSIS

A. Algorithm

The usual approach to implement such a coherence analy-
sis requires multi–target tracking. However, tracking is itself
a non error–free difficult task. Thus, we aim to explore a
different alternative which doesn’t require tracking. In order
to determine if the confidence assignments are coherent in
time, we propose to use an accumulation array as well as a
state array, namely A and S respectively. Both arrays are of
the same dimensions than the original image, thus, a given
two–dimensional coordinate valid for the original image is
also valid for these arrays and viceversa, i.e., there is a one–
to–one coordinate mapping. The overall algorithm proceeds
as follows:
• Initialization (k = 0). The values of A will range from

0 to a given value MA, starting as A(0) ← 0. The values
of S are either true or false, starting as S(0) ← False. B
stands for set of blobs, and V for set of blobs given as
vehicle, both sets are initialized to void.

• For each frame (k > 0):
a) Include in B(k) all detected blobs not directly dis-

carded by the classifiers.
b) {A(k),S(k)}← Update(A(k−1),S(k−1),V(k−1),B(k)).
c) V(k) ← Detect(S(k),B(k)).

Arrays A and S are updated so that we perform a kind of
two–dimensional hysteresis as temporal coherence criterion:
A keeps hysteresis value and S hysteresis state (Fig. 7). In
particular, these are the detailed steps of the algorithm for a
frame k > 0:

1) Obtain B(k). Let υ(k)
b be the confidence assigned to

blob b at frame k. For each b at frame k, if υ(k)
b = 0, i.e.,

if the blob has been fully distrusted by the classifiers–
combination of equations (1) and (2)–, then we reject
b, otherwise we add b to B(k).

2) Clean A and S. Let C be the set of coordinates
included in the bounding boxes of the blobs in V(k−1),
i.e., of the vehicles detected in the previous frame. All
the cells of A out of C are set to zero and, analogously,
in S are set to false. In fact, here we can be less
restrictive, we can conserve not the strict area delimited
by the bounding boxes but the area delimited by a
scaling of that bounding boxes. Besides, the scaling of
each bounding box can depend on its location, like we
do to spread A and S (Sect. III-B).

3) Decrease A. At a cell of coordinates (i, j) we perform
the operation Â(k)

i, j ←max(0,A(k−1)
i, j −d), where d is a

fixed number that controls the decay ratio: starting at
MA, MA/d steps are required to reach 0. In fact, d can
take one value out of two possibilities, namely d = dt

Fig. 7. Hysteresis process. Starting at the false state, the accumulation
must reach the 50% of the maximum accumulation to switch to the true
state. To return to the false state the accumulation must go back to zero. At
the true state we allow to accumulate and extra memory in order to favor
clear vehicles that get a confidence over the 50% of the maximum.

if S(k−1)
i, j = true, and d = d f otherwise. This allows a

different decay for the two different hysteresis states.
4) Spread A and S. With the aim of actually combining

confidences coming from the same target from frame
to frame, the values of each cell of the arrays Â(k)

and S(k−1) are spread following the expected motion
of the targets (see Sect. III-B for more details). This
operation returns the updated arrays Ã(k) and S̃(k).

5) Increase A. Let C(k)
b be the set of coordinates that

form a blob b∈B(k). Then we use the updating formula
A(k)

Cb
←min(Ã(k−1)

Cb
+υ(k)

b ,MA), where the subscript Cb
stands for all the cells whose coordinates are included
in Cb. This process is applied for all the blobs in B(k).

6) Hysteresis on S. We obtain S(k) as follows:

• if A(k)
i, j = 0 then we set S(k)

i, j ← false;

• if A(k)
i, j ≥MA/2 then S(k)

i, j ← true;

• if 0 < A(k)
i, j < MA/2 then S(k)

i, j ← S̃(k)
i, j .

7) Detect vehicles (update V). For each blob b ∈ B(k)

compute the logic or at S(k)
Cb

. If the logic or yields true
then the blob is classified as vehicle and as non–vehicle
otherwise. All blobs classified as vehicle in this step
form the V(k) set.

We have set MA = 2, thus, the state of true is reached over
MA/2 = 1, returning to false when reaching the null value
again (Fig. 7). Taking these values into account we can set
the most appropriate weights for Eq. (2). For instance, in Fig.
6 we can see that for the chosen thresholds the response of
the classifier for close to mid distance headlights (non–small)
has a quite high performance. Thus, in the one hand, we can
use a high weight, in particular, the figure shows that the
chosen value is w = 1.5. On the other hand, close headlights
are always well classified, besides, they tend to saturate some
pixels, thus, we have g = 1 for Eq. (2). Therefore, following
this equation, the assigned confidence for a close headlight
will be c = 1.5×1 = 1.5, since then c > MA/2, this implies
to reach the true state of the hysteresis in a single frame.

Regarding the decay values, we have set (dt ,d f ) = (45,15)
frames, which in our system means that when a vehicle
disappears the new free area is illuminated in about 2 s.



B. Spread Step

As seen in Sect. III-A, at frame k > 0 this step has as
input the intermediate accumulation array Â(k) as well as
the array S(k−1). The output, Ã(k) and S̃(k), consists in the
spread of Â(k) and S(k−1), respectively. This operation has
the aim of moving the accumulated confidence and state
of a target according to its expected motion but without
explicitly computing such a motion. If this is achieved, the
confidence received by the target in a frame will be actually
combined with the received confidence in next frame. Our
proposal consists in relying on a dilation operation simi-
lar to the one of mathematical morphology. In particular,
we perform the operations Ã(k) ← Dilatemax(Â(k),ei, j) and
S̃(k) ←Dilateor(S(k−1),ei, j), where the subscripts max and or
refer to the core operation used in each dilation operation,
and being ei, j a two–dimensional structuring element whose
shape and size depends on the coordinate (i, j).

Following this formalism, the function ei, j is the one
codifying the expected movement of the targets according
to its position in the image: targets near the horizon stay
quite static from frame to frame while the position of close
ones varies more; oncoming vehicles move fast towards the
image bottom while preceding vehicles do not. In fact, we
are actually using a pair < Ah,Sh > for blobs that, being or
not vehicles, are headlight–like, and < At ,St > for those
taillight–like (please, refer to Sect. II-B to see how we
perform this distinction). The dilation related to < Ah,Sh >
is based on the function ei, j;h, while for < At ,St > we use
ei, j;t . In this way we can set different expected movements
for oncoming and preceding vehicles.

Please, notice that in Sect. III-A we have not introduced
the fact of using different pairs < Ah,Sh > and < At ,St >,
just to keep simpler the exposition of the idea of the
algorithm. In fact, the only differences are in the following
steps:

• Increase A. To obtain A(k)
h we only consider the blobs

of B(k) that are headlight–like, and for A(k)
t the ones

that are taillight–like.
• Detect vehicles (update V). In this case the mentioned

logic or is applied to both Sh and St , i.e., a blob is
classified as vehicle if Sh determines so, or if St does
it, no matter if the blob resembles more to a headlight
or to a taillight.

We apply the same processing to < Ah,Sh > and < At ,St >
in the rest of steps, using the same parameters.

Currently, ei, j;h has been defined so that the width of
the structuring element grows from the horizon towards the
image bottom, as well as towards the left and right image
borders from its center. In particular, around the horizon the
smallest width radius is of 2 pixels and the largest is 7, at the
image bottom the values are 20 and 70 pixels, respectively.
The height of the structuring element is constant in this case,
concretely we have set to 2 pixels the height radius.

The function ei, j;t has been defined in a similar manner.
The smallest width radius around the horizon is of 3 pixels
and the largest of 5, while at the image bottom these numbers

are 30 and 50 pixels, respectively. In this case, the height of
the structuring element decreases from the horizon towards
the image bottom, but doesn’t depend on the image column.
Around the horizon the height radius is of 5 pixels and of 2
at the image bottom.

In all cases the growing function has been chosen to be
quadratic. Besides, all these settings also take into account
that the size of the blobs can compensate the size of the
structuring element. For a same target motion, the bigger
the perceived size the lower the structuring element need
to be. One variable compensates the other when we try to
intersect the confidence of the same target from a frame to
its following one.

Although currently the functions ei, j;th and ei, j;t have been
manually adjusted, the obtained results are quite satisfying
as commented in next section.

IV. RESULTS

As it is shown in Fig. 5 we have already evaluated the
performance of our current classifiers individually. We think
the obtained performance is quite high since it is over the
90% for both vehicles and non–vehicles, except for the case
of far away (small) taillights where the performance is just
slightly below the 90%. Notice that, as it is mentioned
in Fig. 5, the training set is based on sequences taken
around Barcelona while the sequences for the testing set
were taken around Wolfsburg, thus, although using the same
camera models the driven vehicle was different. Besides,
in the different acquired sequences we were progressively
using preliminary versions of our vehicle detector to control
a headlight system with adaptive cut–off beam (Fig. 1).
Thus, in the same frame we have lights from vehicles and
reflections from infrastructure elements, something that is not
possible by only turning on the high beams when no other
vehicles are present. This can be appreciated in Fig. 8.

Regarding the performance of the whole system, i.e., using
the thresholds and weights of Fig. 6 followed by the proposed
temporal coherence analysis, at this moment we can only
provide a qualitative impression since we are still working
in the quantitative analysis. For the latter, since we have to
answer the question how many frames are required to detect
a vehicle, it is necessary to label not only isolated blobs but
entire tracks as ground truth.

After visually examining many testing sequences, the
impression we have is that oncoming vehicles are mostly
detected using a single frame if they are at distances under
300 m and in two or three frames otherwise. For taillights
two or three frames are needed at distances under 300 m and
three to five otherwise. Notice that when a vehicle appears
the overall reaction time of the headlight control should
be less than half a second. This implies that the vehicle
detection should be within about 200 ms because of the
slow actuators in some headlamps. Then, for a case when
five frames are required, we must process each frame in
less than 40 ms. This requirement is satisfied by our current
C++ implementation since it takes less than 20 ms using a
2 GHz Pentium Mobile. Thus, a very high detection rate



Fig. 8. Example of vehicle detection: several frames of a sequence have been selected and their central area zoomed in for illustration. The top row shows
the area of each original image with bounding boxes around the processed blobs. Bounding box color means that: (yellow) for the classifiers the blob is
a non–vehicle according to the thresholds in Fig. 6; (green) for the classifiers the blob is doubtful, but the hysteresis process doesn’t accept the blob as
vehicle; (blue) the blob has been finally classified as vehicle. The middle row is a visualization of max(Ah,At). Bottom row is a further zoom–in around
high values of previous row, but only for the left–most and right–most examples. The sequence starts with one oncoming car and another preceding one
near the horizon. The oncoming car gets closer until it disappears of the field of view, the confidence accumulation that it generates moves accordingly.
The preceding car stays quite static in the image since it is close to the horizon and we move at similar speed. In the different frames there appear poles
and traffic signs, some of them are directly rejected by the classifiers (i.e., zero confidence) and the others are rejected by the hysteresis process (i.e., for
not having sufficient accumulated confidence).

is observed while spurious false positives that the direct
classifiers’ output would introduce are filtered out by the
temporal coherence analysis.

V. CONCLUSION

In this paper we have addressed real–time vehicle de-
tection at nighttime with the purpose of developing an
intelligent headlight controller. This implies to face the
problem using computer vision techniques. We assume a
monocular image acquisition system which is not especially
customized for our application, thus, opening the possibility
to use the same hardware for additional driver assistance as
lane departure warning or traffic sing recognition.

The main challenge in the addressed application is to
discern between image spots actually due to vehicle lights
and those coming from reflections in different infrastructure
elements. To confront that challenge we have proposed a new
classifiers–based architecture and a new temporal coherence
analysis. This paper has focused on the temporal coherence
analysis, presenting an alternative to multi–target tracking.
In particular, the proposed confidence accumulation space
together with the companion state space provide a sort of
two–dimensional hysteresis space that takes into account the
plausible motion of the targets without explicit tracking. This
mechanism works as an integration in time of single frame
classification decisions coming from the direct application of
the learned classifiers, which are prone to errors. Although
we are still working to provide a quantitative evidence of
the usefulness of the proposed temporal coherence analysis,
qualitative impression is that it allows to keep the best of
the classifiers while alleviating the worse. In particular, the

system mostly reacts in one single frame for targets that are
clear vehicle lights, or in only a few frames for targets whose
type is more difficult to discern, most often because they are
small dim spots.

Future work will focus on increasing the classification
performance for most difficult targets investigating the use
of new features. We want also to investigate the possibility
of automatically learn the settings in which the temporal co-
herence analysis rely, i.e., classifiers thresholds and weights
as well as expected motion at each image pixel.
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