
 

Accurate mapping of natural scenes radiance to cone activation 
space: a new image dataset 
C.A. Párraga, R. Baldrich and M. Vanrell; Centre de Visió per Computador/ Computer Science Department, Universitat Autònoma de 
Barcelona, Edifício O, Campus UAB (Bellaterra), C.P.08193, Barcelona, Spain. 

Acknowledgements 
This work has been partially supported by projects TIN2007-64577 and Consolider-Ingenio 2010 CSD2007-00018 of the Spanish 

Ministry of Science (MEC). CAP was funded by the Ramon y Cajal research programme of the MEC (Ref. RYC-2007-00484). 
 

Authors’ Biographies 
Maria Vanrell is Associate Professor in the Computer Science Department of the Universitat Autonoma de Barcelona and is attached to the Computer 

Vision Center as a researcher. He received his Phd in Computer Science from the Unviversitat Autonoma de Barcelona in 1996. His research interest is 
mainly focused in color and texture in computer vision problems, including color constancy, texture description and color and texture grouping. 

Ramon Baldrich is an Associate Professor in the Computer Science Department of the Universitat Autonoma de Barcelona and is attached to the 
Computer Vision Center as a researcher. He received his Phd in Computer Science from the Unviversitat Autonoma de Barcelona in 2001. His research 
interest is mainly focused in color treatment in computer vision problems, including color segmentation, color constancy, color induction and image 
shadows. 

C. Alejandro Párraga graduated in Physics (UNT, Argentina) in 1993, was awarded his MSc. (Bristol, UK) in 1996 and his PhD (Bristol, UK) in 2003. 
He worked as a postdoctoral fellow at the Universities. of  Cambridge, and Bristol in the UK.. He was awarded both the "Juan de la Cierva" (2005) and the 
"Ramon y Cajal" (2007) Research Fellowships in Computer Science by the Spanish Ministry of Science and Technology. He is based in the Computer 
Science Department of the Universitat Autonoma de Barcelona and is attached to the Computer Vision Center as a researcher since 2006. 

 

 





 

Accurate mapping of natural scenes radiance to cone activation 
space: a new image dataset 

 

 

Abstract 
The characterization of trichromatic cameras is usually 

done in terms of a device-independent color space, such as the 
CIE 1931 XYZ space. This is indeed convenient since it allows the 
testing of results against colorimetric measures. We have 
characterized our camera to represent human cone activation by 
mapping the camera sensor’s (RGB) responses to human (LMS) 
through a polynomial transformation, which can be “customized” 
according to the types of scenes we want to represent. Here we 
present a method to test the accuracy of the camera measures and 
a study on how the choice of training reflectances for the 
polynomial may alter the results. 

Introduction 
The last decade has seen an increasing interest in the 

interplay between the distinctive characteristics of biological 
sensory systems and those of the natural environment. In the case 
of vision, this interest reflects the growing evidence that the 
statistical properties (both spatial and chromatic) of the visual 
environment have contributed to shape the way in which our 
visual system (and that of other species) function. Consequently, 
much research is based on the analysis of the visual environment 
(considering the tasks that a living organism needs to perform in 
order to survive and its biological constraints) with the aim of 
learning about the statistical regularities that the visual system 
may have exploited in its development. 

In his review work on the relationships between visual 
perception and the statistical properties of natural scenes, Geisler 
1 points out that measuring within-domain statistics is central to 
testing for “efficient coding” (the hypothesis that the response 
characteristics of visual neurons can be predicted from the 
statistics of natural images plus some biological constraints). Only 
after knowing the probability distribution of the property 
considered, we can determine which is the most efficient way of 
coding it. To this respect it is important to point out that there is 
an exponential relationship between the number of samples 
required to estimate a probability distribution and the number of 
properties considered. In other words, the more complex 
regularities of the visual environment we want to map, the larger 
the number of scenes we need to gather: this is the main reason 
why scientists have so far concentrated on only a small group of 
properties which need few images to compute. Other reason has 
to do with technical limitations: when natural scene regularities 
are unrelated to the chromatic responses of the visual system 
(multiscale analysis, contours, etc.), the use of uncalibrated 
imagery is justified. However when they involve the chromatic 
domain, a more sophisticated approach is needed. 

Two techniques and methods were initially tried to measure 
and compute the statistical regularities of nature in the chromatic 
domain: (a) spectroradiometric devices which measure spectral 
radiance (radiance as a function of wavelength) from a small 
patch of image at the time, obtaining information about 
illuminants and reflective material properties; (b) hyperspectral 
cameras which measure the same from a whole image at the time 
but require long exposures, etc. Both these methods are 
impractical for gathering large databases of in-the-field imagery: 
spectroradiometric devices do not capture the spatial properties of 
natural images and hyperspectral cameras are only useful for 
indoor environments or when there is little change in time (long 
distance shots, man-made structures, landscapes, etc.). A third 
method has been tried more recently to reach a compromise 
between speed, portability and accuracy: calibrated trichromatic 
cameras are fast and portable but do not provide the complete 
spectral information necessary to fully characterize the reflectance 
of every patch of the image, however they are the only way to 
record the statistics of large samples of the visual environment to 
date. 

The latest advances in digital imaging have turned 
trichromatic cameras into the most common device for 
estimating/measuring the properties of natural scenes. 
Commercial digital cameras are relatively cheap and if properly 
calibrated they can provide photometric information for every 
region of the scene (i.e. a measure of the radiant power absorbed 
by each of the camera’s sensors, for each pixel). Calibrating a 
digital camera generally involves converting the image captured 
in the camera (also called device-dependent) color space into a 
reference (or device-independent) color-space. There are currently 
several methods to produce this color space transformation (see 
Martinez-Verdú et al for a more detailed explanation2). One of 
such methods (the spectroradiometric approach) consists of 
obtaining the camera sensor’s response to a narrowband 
monochromatic stimulus which is in turn varied to span the whole 
spectral sensitivity range of the camera2-4. Since the stimulus’ 
radiometric characteristics are known, it is possible to reconstruct 
the sensor’s spectral sensitivity at each wavelength (and for each 
color sensor). It is also necessary to measure the sensor’s output 
dependency on radiant power to obtain a complete picture of the 
camera’s response to light. Once the sensor’s responses are 
known, it is possible to find an approximate way of transforming 
the camera’s RGB values to any device-independent color space 
(commonly the CIE 1931 XYZ color space). A second approach to 
the characterization of digital cameras is based on mathematical 
models (mathematical approach) which estimate the camera’s 
matching functions from the device RGB responses to a set of 
(known) spectral reflectances, such as the squares of the Macbeth 
ColorChecker card5-8. While the first approach is quite precise, it 



 

 

is seldom used because of its complexity. The last method is 
easier to implement but it is very vulnerable to measurement 
noise. Some intermediate approaches rely on assigning an 
estimated function to the camera’s sensors and performing a 
mapping of the camera’s space by means of a “training set” of 
RGB responses and radiometric measurements9-12. Our approach 
is a mixture of the two: it consists of measuring the camera 
sensitivities by means of photographing a white target through a 
set of spectrally narrowband interference filters 
(spectroradiometric approach) while using a training set to 
“match” the theoretical camera output to a device independent 
space (mathematical approach)13. 

The problem of converting to cone activation space 
Whatever solution is chosen for characterizing the camera 

output in terms of a device-independent color space, the further 
transformation of these values into a cone activation space is not 
without difficulties. Cone activation spaces are physiologically 
realistic alternatives to the already ubiquitous systems of 
specifying color adopted by the Commission Internationale de 
l’Eclairage (CIE), being the best established of these systems the 
CIE 1931. When the CIE 1931 systems was adopted, the spectral 
sensitivities of the actual photoreceptors in the human retina were 
not indisputably known and instead, a set of hypothetical 
primaries was adopted, based on the experiments of Guild14 and 
Wright15 to determine the human color matching functions. The 
trichromatic values XYZ of the CIE 1931 system can be 
understood as the photon catches of three arbitrary photoreceptors 
with spectral sensitivities determined by the so called , ,x y z  
functions. These functions are approximately point-by-point linear 
transformations of the cone spectral sensitivities of an average 
human observer (in fact z  is actually very close to the spectral 
sensitivity of human short-wavelength -or “S” cones and y  was 
chosen to have the same shape as the standard function of 
luminous sensitivity or V ).  

Despite the CIE 1931’s popularity and some obvious 
advantages, a chromaticity system that is not based on human 
physiology (or any other physiology, as in this case) is of limited 
use for researching the neural properties of a visual system. To 
amend this situation, a number of physiologically-plausible 
chromatic systems have been adopted by the neuroscience 
community, being one of the most popular the MacLeod-
Boynton16 space. In the MacLeod-Boynton space, the axes 
correspond to two of the chromatic channels identified 
physiologically by Derrington et al 17 in the early visual system. In 
this space, physiologically significant loci are represented by 
horizontal and vertical lines. To make the situation more 
complicated, MacLeod-Boynton system is derived from the Smith 
and Pokorny18 human cone sensitivities, which in turn are not 
exact point-by-point transformations of the CIE , ,x y z , but of 
the slightly different set of primaries calculated by Judd in 1951 
(and tabulated by Vos in 1978) known as the Judd-Vos response 
functions19. These are favored in visual science because of its 
better estimate of luminosity at short wavelengths. There is a 
formula19 for transforming between the chromaticity coordinates 
of the CIE 1931 and the Judd 1951 system but it is valid only for 
monochromatic lights. This means that to use the MacLeod-
Boynton system or any other cone activation space derived from 

the Smith and Pokorny (1975) sensitivities it is necessary to know 
the spectroradiometric properties of the stimulus. 

The most straightforward way of avoiding the inconvenience 
of a two-part chromatic conversion of the stimulus (from device-
dependent camera-RGB space to CIE 1931 XYZ and then to 
Smith and Pokorny LMS (L for long, M for middle and S for short 
wavelength) cone activation space with the consequent 
transformation errors, is to characterize the camera directly in 
terms of the later (LMS) space. This can be done if one already 
knows the camera’s sensor spectral sensitivities by means of 
finding the best transformation between the two chromatic 
systems. In this work we have based our analysis in the Smith and 
Pokorny (1975) cone responses, which are calculated at the cornea 
(as opposite to cone “pigment” spectral sensitivities). However, 
an alternative LMS dataset based on the Stockman and Sharpe 
(2000) cone fundamentals20 (which are currently adopted by the 
CIE) is also available for download from our website13. The 
results for both datasets are similar. 

A transformation from camera-RGB space to cone-
activation LMS space. 

Accurate linear transformations between chromatic spaces 
can be implemented only if the spaces satisfy the Luther 
condition21,22 that is, primaries should be linear combinations of 
each other. This means that for an exact transformation of any 
triplet representing the quantum catches of the three camera 
sensors to the equivalent catches of the human LMS cone sensors 
to exist, there must exist a linear transformation between each 
point of the camera’s spectral sensitivities and the corresponding 
point of the human cone spectral sensitivities. This condition is 
extremely hard to satisfy which means that surface metamerism 
will indeed exist (unless the camera has been specifically 
designed for that purpose, which is hardly in the interest camera 
manufacturers, to say the least) however, several approximations 
can be attempted. One such approximation consists of a 
mathematical approach style and relies on the existence of a 
calibrated camera where the sensor sensitivities are known, and 
can be implemented as follows. 

Suppose that we know the sensitivities of the camera sensors 
Si, and a given sample of the types of reflectances R and 
illuminations I that we are likely to photograph (which are all 
function of the wavelength), then we can calculate the camera’s 
output G for each sensor i, surface j and illumination k by using 
equation 1:  
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On the other hand we can do the same calculations for the 
cone activation D values that the same combinations of 
reflectances and illuminants are likely to elicit when sampled by 
each of the human cone sensitivities Ci. 
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Our problem is now reduced to finding the best mathematical 
solution (mapping) to match each set: cone activations to camera 
sensors activations. To map D and G there is variety of  
techniques, from interpolation and lookup tables 23,24 to 
polynomial regressions 25-27, neural networks 9 and spectral 
reconstructions 28,29) which may prove more or less efficient and 
have various pros and cons (for a comparison of some of these 
techniques see Cheung et al9 and Hong et al27).  

Polynomial solutions 
For our transformation, we choose a very simple (least-

squares) regression mapping method consisting of finding the 
optimal polynomial transform for an arbitrary set of reference 
surface reflectances. The choice of references may depend on the 
particular problem, e.g. one choice may optimize the colorimetric 
mapping for natural surface reflectances and give a higher 
colorimetric error for saturated blues or it may not transform the 
white appropriately. However, we can turn this multiplicity of 
choices to our advantage, since it gives us the freedom of deciding 
which colors are likely to be predominant in the images (or need 
to be specified precisely) and which ones are likely to withstand a 
larger colorimetric error. We have used a similar idea to calibrate 
our camera in the CIE 1931 XYZ color space13 

For our regression mapping, both the outputs of the camera 
sensors G and those of the human sensors (cones) D for our 
reference dataset of N surface reflectances and M illuminations 
are treated as a set of NxM triplets and indexed with a single 
letter (j). The values of G, are then mapped to the values of D 
using a polynomial expansion as follows: let Gi,j correspond to the 
jth vector of RGB (R corresponds to i=1, G to i=2 and B to i=3) 
values obtained by our camera from the combination of 
surface/illumination j (part of a set of NxM measurements) and let 
Di,j correspond to the LMS cone capture values (L corresponds to 
i=1, M to i=2 and S to i=3, to follow a similar notation) of the 
same combination. In the simplest case, our objective would be to 
find the matrix T that minimizes  in the following expression: 

3 2

, ,
1 1

NxM

i j i j
i j

D G T
 

   
(3) 

However, in our case, the product GT was replaced by a 
polynomial expansion. Leaving the expression to minimize as: 

3 2

,
1 1

NxM

i j j
i j

D Q P
 

   
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where Q represents the vector Qj = [G1,j , G2,j , G3,j , G1,jG2,j , 
G2,jG3,j , G1,jG3,j] for each of the three sensors i and NxM 
measurements j. P is a matrix of 6x3 coefficients to be 
determined.  

Both sets of NxM triplets can be obtained using equations 1 
and 2, applied to our “reference” set of reflectances and 

illuminations, the question now resides on how to choose the 
characteristics of these reference datasets. 

Given that we do not know in advance which will be the 
main use of our characterization to LMS, we tried at first a 
generalist approach, considering a wide sample of known 
reflectances: a set of 1269 mate Munsell chips in the 400-700 nm 
range obtained from the COLORLAB30 database and illuminated 
by a standard D65 illuminant. 

This choice of training set should give a reasonable mapping 
over a wide color gamut. However, if we knew in advance that the 
scenes to be photographed were, say, landscape scenes, it might 
be possible to get a precise mapping by creating a P matrix 
optimized for reflectances such as those of chlorophyll, bark, sky, 
etc. 

 

 
Figure 1: Scheme of the camera calibration set-up. The “target” consisted of a 
white patch inside a box which could be illuminated form one side and 
photographed though the other. Light reflected form the patch was either 
measured or photographed through spectrally narrowband filters. The 
tungsten-based illumination was supplied by a constant-current power source. 
The complete camera sensors calibration is described online alongside a 
calibrated picture dataset. (http://www.cvc.uab.es/color_calibration/). 

Methods 

Camera calibration 
The spectral sensitivities of the sensors of a trichromatic 

camera (Sigma Foveon SD10) were measured by recording its 
RGB sensor’s responses to light transmitted by a set of 31 
spectrally narrowband interference filters. These recordings were 
later compared to equivalent spectroradiometric measures. The 
camera’s sensors dependency with light intensity and integration 
time was also measured by means of a Macbeth ColorChecker 
card. The light was produced by an IR-filtered, tungsten-halogen 
lamp (Osram HLX 64657FGX-24V, 250W) connected to a 
constant-current power-supply to ensure illumination stability 
during the whole process. To minimize measurement noise, the 
calibration was conducted inside a black room (walls were 
painted black). All measures were made with a 
telespectroradiometer (TopCon model SR1, calibrated by the 
UK’s National Physical Laboratory). This instrument was capable 
of measuring spectral radiance within the 380-760 nm range. Its 
spectral radiance measurements were within the 4% limits 
specified by the manufacturer at the time of its calibration. A 



 

 

complete description of the camera calibration and accuracy tests 
is currently online 13.  

By means of the set-up described in Figure 1 we were able to 
measure the sensor’s dependency with wavelength (including the 
camera lens at a particular configuration). The dependency with 
intensity was measured by photographing a Macbeth 
ColorChecker under fixed illumination several times, varying the 
camera’s shutter speed (the sensor’s integration time). The non-
linearities of the sensors with regard to intensity were 
compensated by means of a gamma-correction function similar to 
that defined for CRT monitors. The sensor’s dependency with 
wavelength is shown in Figure 2 (values have been scaled so that 
the middle-wavelength sensor’s maximum value is equal to 1). In 
a normal setup, physical information about the camera lens (their 
aperture and focal length) and shutter speed is extracted from the 
picture header and incorporated automatically to the lens+sensor 
capture calculations. These curves are similar to those obtained 
for the same sensors (in isolated conditions) by Lyon and Hubel31. 

 
Figure 2: Camera sensors sensitivity normalized to maximum = 1 for the 
Green sensor (i = 2). 

Polynomial solutions to equation 4 were found by solving for 
P equation 5, where D is the matrix of LMS cone responses 
calculated from equation 2 and Q is the expanded matrix of RGB 
camera responses calculated from the discrete version of equation 
1 for all test reflectances.  
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The solution for P (calculated for 1269 Munsell chip 
reflectances) is a 6x3 matrix of coefficients, shown in  
Table 1.  

 
-0.03642 0.158517 -0.0680 -1.63e-08 -1.52e-08 3.71e-08 

-0.08864 0.192649 0.07204 -1.02e-08 -8.73e-09 2.23e-08 

0.043564 0.13908 0.14357 -9.69e-09 -9.27e-09 2.17e-08 
 
Table 1: Exemplary set of coefficients obtained by solving equation 5 for P in 
Matlab. The coefficients applied to double products (columns 4, 5 and 6) are 
usually much smaller than those applied to single sensor outputs (columns 1,2 
and 3), indicating that a simple 3x3 transformation may be adequate for many 
applications. 

The following section shows the “RGB to LMS” 
characterization errors obtained for several training sets of 
reflectances, tested on a dataset of eight calibrated hyperspectral 
images, available online from Manchester University 32 in the 
UK. 

 

 
Figure 3: Schematics of the experiment to test the accuracy of the LMS cone 
characterization of our trichromatic (RGB) camera. The workings of the 
camera were simulated by sampling a hyperspectral set of scenes 
(synthetically illuminated by a D65 illuminant) through the camera sensors’ 
sensitivities. The results were then transformed to LMS by the polynomial 
described in equation 5 (“test image”) and compared to the actual samplings 
of the same hyperspectral imagery by the human cone responses (“ground 
truth”). The pictures inside the figure show gamma-corrected versions of the 
actual results for an exemplary image (scene 7, taken from the hyperspectral 
database gathered by Foster et al32). 



 

 

Experiments and results 
The quality of our camera characterization in terms of LMS-

cone capture was measured for several different polynomial 
values, each one obtained for a different training set of 
reflectances. The training sets used here were in the 400-700 nm 
interval, illuminated by a simulated D65 (CIE standard daylight 
illuminant) and can be described as follows. 

TS1: Munsell training set. It consists of the reflectances of 
1269 mate Munsell chips sampled every 10 nanometers and 
interpolated to 1nm. They were obtained from the COLORLAB 
database30. 

TS2: Macbeth ColorChecker training set. It consists of a set 
of 24 reflectances obtained from the Macbeth ColorChecker 
sampled every 1nm intervals. 

TS3: NE reflectances training set. It consists of a set of 219 
Northern European natural reflectances33 sampled in 1nm 
intervals. 

TS4: Chlorophyll training set: it consists of reflectance 
samples obtained from scene 2 of the dataset (see Figure 4 for a 
thumbnail set showing all the scenes used in this analysis). The 
samples were obtained by probing the hyperspectral scenes, 
extracting the spectral reflectance of every other pixel in both 
dimensions (341,030 samples in total). 10 nm sampling was 
interpolated to 1 nm. 

TS5: Urban reflectances training set. It consists of samples 
obtained from both, scene 6 and scene 7 (see Figure 4), extracting 
the spectral reflectance of surfaces every three pixels in both 
dimensions (302,911 samples). 

The different polynomial values were tested on the dataset by 
calculating the corresponding LMS values using both, the camera-
sensors-polynomial transformation and a simulation of the LMS 
cones (see Figure 3). The first transformation was the “test” and 
the second was used as “ground truth” for this comparative 
analysis. The resulting pairs of LMS images were scaled to a 
maximum value of 1 and the “test” was subtracted from the 
“ground truth”. The difference between the images gives us an 
idea of the error err arising from the calibration method. TS1, 
TS2 and TS2 were tested on the complete dataset of 8 images. 
TS4 was tested on scenes 1, 3, 4, 5, 6, 7 and 8, skipping the scene 
which generated the learning set (scene 2). TS5 was tested in 
scenes 1, 2, 3, 4 and 5 (the ones containing a higher proportion of 
natural objects, which were not used in the training). 

 
Training 

set 
errors L plane M plane S plane 

mean err -0.0021 -0.0019 -0.00007 
TS1 

max(|err 0.056 0.044 0.027 
mean err -0.0038 -0.0019 -0.0008 

TS2 
max(|err 0.067 0.046 0.030 
mean err -0.0034 -0.0020 -0.0007 

TS3 
max(|err 0.056 0.039 0.040 
mean err 0.0015 0.0014 0.0017 

TS4 
max(|err 0.078 0.057 0.048 
mean err -0.0022 -0.0023 -0.0013 

TS5 
max(|err 0.055 0.035 0.054 

 
Table 2: Summary of the average errors measured for each L,M, and S plane 
for each of the training sets considered. 

 
Table 2 and Figure 5 show a summary of our results for all 
training sets and tests scenes. The histograms show how the 
errors are distributed in terms of numbers of pixels. All 
histograms show peaks close to 0, which corresponds to their 
small mean errors (shown in the plots). Surprisingly, the errors 
produced by one of the “generalist” methods (the polynomial 
generated by TS1 -Munsell chips) are among the smallest. 

The next “generalist method”, the polynomial derived from 
TS2 (Macbeth ColorChecker samples) is the worst case, both in 
terms of mean error and absolute maximum error. This is not 
surprising giving the small number of samples. The polynomial 
generated by TS3 (NE reflectances database) has not improved on 
the results of TS1, which might be due to its bias towards 
saturated colors, which are relatively unusual in nature. The best 
results were produced by the polynomial generated by TS4, 
applied to the rest of the scenes. The sampling generated by the 
pixels of scene 2 (predominantly chlorophyll) might be a more 
representative model of the reflectances encountered in nature. 
The polynomial generated by TS5 (based on urban surface 
reflectances) was also not bad in terms of mean errors, coming on 
top of those based on NE reflectances and Macbeth ColorChecker 
samples. 

 

 
Figure 4: Thumbnail representations of the hyperspectral reflectance scenes 
used to test the camera RGB to LMS characterization in this work. Each scene 
consists of 1018 x 1339 pixels sampled along the visible spectra in 10 nm 
steps (33 planes per image).More information can be obtained from  
http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_image
s_of_natural_scenes_04.html 

The distribution of errors in terms of chromaticity was also 
explored to see if there was any bias towards specific colors. 
Figure 6 shows the distribution of errors in the CIE 1931 x,y 
chromaticity diagram. Although the gray-levels in Figure 6 
represent mismatches between the chromatic channels in LMS 
cone space, we found more convenient to visualize the position of 
these errors in a more familiar chromaticity space such as the CIE 
1931. Given the disparity between the maximum values and the 
mean ones, and the presence of negatives, we plot the logarithm 
of the absolute error (log(|err|)) in Figure 6. All plots show a 



 

 

concentration of errors along the yellow-greenish frontier. This 
can be explained by the presence of large shadowy areas among 
the leaves, which are prone to noise. The model that produces the 
most even distribution of errors (small errors = darker gray areas 
in the figures) is the one based on TS1 (the Munsell chips 
training set). The other remarkable model (it produces a large 
“peak” of errors mostly in the reddish-pink part of the diagram) is 
the one based on TS5 (urban scenes). This is to be expected, since 
this model should not be particularly well suited for the general 
“naturalistic” scenery. 

Another measure of the characterization error is shown in 
Table 3. The columns show, for each LMS plane considered, the 
relative error, i.e. the averaged difference between the values 
obtained by subtracting the test to the ground truth solution (the 
err), divided by the largest of the two. 

 

 
Figure 5: histograms representing the frequency of errors in terms of the 
numbers of pixels per error interval per L, M or S sensor. The plot also shows 
for each training set (TS1 to TS5) the mean error, and the absolute maximum 
error. 

Training set L plane M plane S plane 

TS1 -0.063 -0.065 -0.047 
TS2 -0.077 -0.065 -0.086 
TS3 -0.067 -0.057 -0.123 
TS4 -0.034 -0.029 0.024 
TS5 -0.031 -0.041 -0.097 

Table 3: mean relative errors for each of the three (LMS) planes considered. 
The errors were calculated by dividing each pixel difference (err) in the largest 
pixel value of the pair, for each (x,y) position in each of the 3 planes. The 
predominance of negative values (systematic error) may reflect a slight bias in 
the camera sensors’ dependency with radiant power (gamma-correction). 

The values obtained in Table 3 are larger than those of  
Table 2 and this is a natural consequence of computing values 
that contain image noise in our calculations. Noise present in the 
images becomes more relevant for lower intensity values such as 
those of shaded areas, and will increase the estimated averages. 
However, it is interesting to compare this measure for the 
different training sets considered. Again the best polynomial is 
that determined by TS4 (Chlorophyll-rich samples) supporting the 
idea that a significant improvement can be obtained by 
“customizing” the dataset to the expected content of the target 
scenes. 

 

 
Figure 6: The first plot corresponds to the locus of all colors contained in the 8 
images of Figure 4. All other plots show the mean errors (gray-levels) as a 
function of chromaticity (in the CIE 1931 diagram) for each of the 5 Training 
sets considered. For ease of representation given the disparity between the 
largest values and the smallest ones, all plots show the logarithm of the 
absolute value of the error. 

Discussion 
Our tests have shown the feasibility of a “customized” 

characterization of our trichromatic camera, taking on board the 
predicted features of the scenery to be photographed. There are 
many datasets of reflectances that could serve particularly well as 



 

 

“training sets” for this characterization. These include the dataset 
tested here and other hyperspectral scenery both urban and 
“natural” available from the Foster-Nascimento databases32,34. 
The decision on whether to choose a training dataset or another 
(e.g. “generalistic” or “foliage-based”) should be based on the 
percentage of pixels that are likely to be present in each category 
and its details will be analyzed in the future. However, it is 
indeed surprising the robustness of the measures obtained by 
applying the Munsell-based polynomial (TS1) to various imagery. 
This has been the default settings for our LMS cone sensitivity 
images to date. The results of these transformations are available 
online13. It might be interesting to explore several other ways to 
improve the overall accuracy of the characterization in the future, 
e.g. by trying a different polynomial mapping algorithm along 
with ways of converting images generated by one optimization 
choice into another. These issues will be explored in the future. 
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