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a b s t r a c t

This paper introduces a novel approach to automatic, yet flexible, image concept transfer; examples of

concepts are ‘‘romantic’’, ‘‘earthy’’, and ‘‘luscious’’. The presented method modifies the color content of

an input image given only a concept specified by a user in natural language, thereby requiring minimal

user input. This method is particularly useful for users who are aware of the message they wish to

convey in the transferred image while being unsure of the color combination needed to achieve the

corresponding transfer. Our framework is flexible for two reasons. First, the user may select one of two

modalities to map input image chromaticities to target concept chromaticities depending on the level

of photo-realism required. Second, the user may adjust the intensity level of the concept transfer to his/

her liking with a single parameter. The proposed method uses a convex clustering algorithm, with a

novel pruning mechanism, to automatically set the complexity of models of chromatic content. Results

show that our approach yields transferred images which effectively represent concepts as confirmed by

a user study.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The manipulation of the chromatic content of images has
applications ranging from color correction in movie post-produc-
tion to document or user profile personalization and graphic
design. In particular, color transfer modifies image color content
by transferring the chromatic characteristics of a target image to
an input image. Concept transfer involves modifying an image
such that it adheres to a concept, where a concept is typically
represented by a collection of colors referred to as a color scheme.
We use the term concept to refer to emotions or moods which are
amenable to a chromatic representation. Examples of concepts
include ‘‘romantic,’’ ‘‘serene,’’ and ‘‘cool.’’ Therefore, concept-
based color transfer modifies the chromatic appearance of an
image or document such that the transferred version assumes a
specific conceptual message. Fig. 1 shows an example of transfer-
ring the ‘‘earthy’’ concept to an image.

There has been very little work in the literature on the topic of
transferring concepts to images. In [1] Hou and Zhang proposed a
concept transfer method which required manual color editing and
in which the concepts include semantic ones such as ‘‘beach’’.
Yang and Peng [2] described an automatic method of transferring
ll rights reserved.

),
moods to an input image by extracting the color information from
a suitable image chosen from a database, where each image is
associated with a particular mood. Because each mood is repre-
sented by a single color, the concept has a rather narrow
interpretation. In addition, it requires each of the target and input
images to contain a dominant color, in order to successfully
convey the concept. The work described in this paper is closest
to the method proposed by Wang et al. [3] in which the colors of
an input image are modified according to a color combination
representing a specific theme such as ‘‘graceful’’. However,
their approach requires user scribbles in order to enhance theme
transfer.

Unlike the state of the art methods, our proposed method is
automatic and uses abstract concepts specified in natural lan-
guage [4]. The method is particularly appropriate for the unskilled
user, who is often aware of the message he or she wants to
convey, but uncertain about the colors to use for his/her docu-
ment or image. This is the main contribution of our method with
respect to other transfer methods such as [3]. The second
contribution concerns the modelling of the color profiles of both
the concept and the input image, in which model complexity is
determined through a novel convex clustering approach.

Our approach preserves flexibility in two ways:
1.
 It employs one of two proposed techniques for mapping input
chromatic content to target chromatic content. In the first
technique, a probabilistic model of the input image is learnt,
following which the flow between input colors and target
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Fig. 1. Example of transferring the ‘‘earthy’’ concept to an image. (a) Original image and (b) image after transfer of ‘‘earthy’’ concept.
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Fig. 2. Our concept transfer framework. K is the parameter used to adjust the transfer level. See Section 1 for details.
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colors, computed using the Earth Mover’s Distance (EMD), is
used as a mapping. This technique typically produces non-
photorealistic results. In the second technique, Bayesian adap-
tation is used to create an input image model by adapting
the concept model using the chromaticities present in the
input image. In this case the adaptation inherently maps input
colors to similar concept colors resulting in a more natural-
looking image.
2.
 The final stage of our approach, where color transfer is
performed, includes a mechanism which allows the user to
tune the level of concept transfer to his or her liking. Fig. 2
summarizes our proposed concept transfer framework.

The remainder of the paper is organized as follows. In
Section 2 the state-of-the-art in image-based and concept-based
color transfer is described. Section 3 describes the convex
clustering algorithm used to set color model complexity. In
Section 4 we describe the stages of our automatic concept transfer
framework. Section 5 shows and discusses the results obtained
using this framework and compares our results to those of a state-
of-the-art approach. In addition, this section describes a test
performed on non-expert subjects who were asked to identify,
between a pair of images, which image is more consistent
with a concept. To the best of our knowledge, this is the first
time a user study of this nature is performed. Conclusions are
given in Section 6.
2. Previous work

There is considerable work in the literature on color transfer.
With the recent trend of labeling color combinations, or color
schemes, with abstract concepts [5,6], the problem of concept
transfer is being increasingly addressed. We first start with an
overview of color transfer and previous work. We then give an
overview of the work on concept transfer.
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Color transfer: Color transfer methods typically consist of three
main steps which are described below along with the related
work.

Color model representation: The colors present in input and
target images are modeled using representations such as prob-
ability density functions, particularly Gaussian Mixture Models
(GMMs), or 3D color histograms. GMMs and color histograms
contain components which are representative of the modeled
color data, specifically the means and covariances of Gaussian
components and the centers of (non-empty) histogram bins,
respectively. We refer to these representative color components
as swatches. Reinhard et al.’s seminal work on color transfer
models the color profile of an image by the mean and covariance
matrices of the pixel representation values in the color space
channels [7]. To avoid computing a full covariance matrix, the
color representation of an image is usually transformed to the
CIELAB (hereafter referred to as the Lab) color space to decorrelate
the channels. Other methods use full covariance matrices and
operate in RGB space [8]. For a more representative profile, color
histograms [2,9–11] and GMMs [12,13] have been employed.
A short coarse color histogram for an image, termed a color
palette, has also been used [14]. A target color model is usually
obtained from a reference image supplied either by the user
[7,10,14], or via image retrieval from a database [2,15]. The
composition of this reference, or target image, must be similar
to that of the input image, in order for color transfer to occur on a
region-to-region basis. For complicated scenes, more than one
reference image may be required [16] as finding a reference
image with similar content to the input image is difficult.

Input-to-target mapping: Input model colors are mapped to
suitable target model swatches using various criteria, most
notably distance metrics and EMD-based flows. When input and
target color models are created using a single Gaussian, mapping
is straightforward [7,8]. For histogram-based color models, the
EMD is a popular choice for which the transportation problem
between the input and target histograms is solved. When the
mapping is one-to-many, the final color used for transfer is a
combination of target model swatches [10,15,17,18]. Colorization
may be seen as a special case of color transfer from a colored
target image to a greyscale input image. In this case, input-to-
target mapping is often performed based on texture similarity
[16,19]. Artificial color boundaries tend to appear when histo-
gram-based models are used, as spatially close input pixels with
similar colors may be placed in different bins and consequently
mapped to very different target colors [2]. This phenomenon is
less common with GMMs but may be noticeable if the occupancy
probability for a pixel is significantly different from that of a
neighboring pixel. To improve spatial coherence, constraints on
the color differences which are allowed between neighboring
pixels were introduced [10,16]. In object-to-object or back-
ground-to-foreground color transfer applications, segmentation
is required, which puts the final result at the mercy of the quality
of the segmentation [10,15].

Color transfer: Transformations between mapped input and
target model swatches are first determined. The affine transfor-
mation technique introduced by Reinhard et al. is the most
common one for transferring color to an input pixel xin to produce
an output pixel xout [7,10,12]. First, the pixel colors are repre-
sented in a decorrelated color space. This allows the use of
diagonal covariance matrices for the input and target color
representations, Sin and St , respectively, which are computed
along with the means min and mt . Using these statistics, the
transform for which the statistics of xout match the target
statistics is xout ¼ mtþðSt

Þ
1=2
ðSin
Þ
�1=2
ðxin�minÞ. For input and tar-

get representations with multiple model swatches, a linear
combination of such affine transformations is used to transfer
color to xin. Pitié and Kokaram introduced a linear transformation
derived from the *Monge-Kantorovich theory of mass transporta-
tion, which minimizes the amount of changes in the image colors
due to the transfer [20]. Another common color transfer techni-
que involves transforming the input image such that the resultant
output image has the same color distribution as that of the target
image. Pitié et al. [9] transformed the probability density function
of the input image into that of the target image. As opposed to
automatic color transfer, the approach in [21], following [22],
requires the user to specify regions of the input and target images
whose colors should be matched by drawing strokes across these
regions. The cumulative density functions of the input regions are
then modified to match that of their target regions using a model
whose parameters are determined by solving a constrained
optimization problem. For intricate images, many region pairs
may need to be defined, making this type of user interaction
laborious.

Concept Transfer: One of the earlier approaches is that of Hou
and Zhang on color conceptualization [1]. Their method extracts
category-specific concept representations. Therefore, the repre-
sentation for a concept such as warm differs for the semantic
categories ‘‘forest’’ and ‘‘beach’’. First, reference images from a
database were manually tagged as belonging to a semantic
category. Images from a category were then clustered and each
resulting cluster was manually labeled with a concept such as
warm. A cluster is represented by an average of the hue histo-
grams of its associated images. Histogram matching is performed
to alter the colors of an image in order to match those of a desired
concept. Since this method does not transfer the saturation and
intensity components of the concept colors, the corresponding
components of the input image must be similar for the concept to
be perceptible in the output image. Another method which per-
forms concept transfer is that of Yang and Peng [2]. Their method
is automatic as it does not require user intervention. However, in
their method the concept needs to be specified through a target
image which contains a dominant color, thus making the identi-
fication of a suitable target image tedious for a user. In addition, a
concept is represented by one color in this method, unlike in our
case where it is a combination of colors. More details on Yang and
Peng’s approach are provided in Section 5.

The work described in this paper is closest to that of Wang
et al. who propose a technique for color transfer based on
concepts [3]. Their approach uses a database of natural images
to learn relationships between color and texture. For example,
‘‘grass’’ is typically associated with ‘‘green’’ or ‘‘yellow’’. These
relationships serve as constraints during color transfer, limiting
the appeal of this approach for non-photo-realistic color-modifi-
cation applications. In addition, prior knowledge is important for
forming these relationships, and user input is necessary to impose
realism on content which lacks texture. Finally, in the user test,
the authors of [3] do not ask the subjects to rate images according
to their consistency with a concept but rather according to their
consistency with colors associated with a concept.
3. Complexity by convex clustering

In our concept transfer method, we model both the target
concept and the input image using Gaussian Mixture Models
(GMMs). Setting the complexity of a GMM model (i.e. the number
of Gaussian components) is a challenging task. In general, there is
no one number of components which fits all images or concepts.
Moreover, in the specific case of color transfer, determining a
suitable number is fundamental. If, for example, the number of
components in the input image GMM is too small, perceptually
different colors may be associated with the same component.
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On the other hand, if the number of components is too large,
perceptually similar colors will be associated with different
components. The convex clustering algorithm proposed below is
an efficient solution for determining the model complexity.

3.1. The convex clustering algorithm

This algorithm involves the optimization of an objective
function using the Expectation-Maximization (EM) algorithm,
and includes a novel pruning method that dramatically increases
efficiency.

The objective function: Let xt ,t¼ 1, . . . ,T be a set of T pixels
to be clustered. We choose to represent the color values of the
pixels in the Lab color space, where the Euclidean distance
correlates with the human perception of color. Our concept
transfer framework will only use chromatic content, and as such
we use only the ab components. Therefore, each of the xt’s is a 2D
point, represented in the ab space. In convex clustering, a kernel is
centered on each point, with an assigned weight wt, and all points
are potential cluster centers. The objective function to be opti-
mized is [23]:

L¼
XT

t ¼ 1

log
XT

s ¼ 1

wsksðxtÞ

 !
ð1Þ

with respect to the wt’s under the following set of constraints:

0rwt r1;

XT

t ¼ 1

wt ¼ 1: ð2Þ

The kernel values ksðxtÞ express a similarity between points xs and
xt. Since we use the Euclidean distance, we compute the similarity
measure using the Gaussian kernel:

ksðxtÞ ¼
1

2pD=2sD
exp�

Jxt�xsJ
2

2s2
, ð3Þ

where s is the standard deviation of the kernel and D is the
dimensionality of the vectors (2 in this case). Using a normalized
kernel k (

R
xkðxÞ dx¼ 1) provides a probabilistic interpretation of

convex clustering:
PT

s ¼ 1 wsks is a probability density function
which is a GMM in the case of the Gaussian kernel and the
function of Eq. (1) is a log-likelihood objective function.

Note that in this formulation of the problem, s is the only
parameter that must be set. Because it affects the similarity
measures between points, it controls the degree of color granu-
larity present in the model. Therefore, by using this formulation, a
fixed degree of color granularity is set, rather than a fixed number
of model components. In this way, the formulation provides an
intuitive proxy for setting the model complexity that is consistent
across all images.

The solution: We solve the convex clustering problem using EM
[23]. This algorithm consists of an E-step (Expectation) and an
M-step (Maximization). The E-step computes the T2 assignments
gst of point xs to the Gaussian centered on xt as such:
gst ¼wtktðxsÞ=

PT
j ¼ 1 wjkjðxsÞ. The M-step re-estimates the wt

values as such: wt ¼ ð1=TÞ
PT

s ¼ 1 gst . To ensure convergence to
the optimal solution, all wt’s should be initialized to non-zero
values. In our experiments, we initialize all wt to 1=T. As the
number of iterations increases, most of the wt’s converge to zero
and the number of clusters, or equivalently Gaussians, is therefore
reduced.

Pruning clusters: If we knew beforehand which wt values would
converge to zero, then we could speed-up the EM algorithm
significantly by initializing these values to zero. As this is not the
case, we attempt to predict which values will converge to zero
and prune them at the early stage of the algorithm. Such pruning
implies removing unlikely cluster candidates by adding a third
step to the EM algorithm. The authors in [23] proposed setting all
the wt’s below a certain threshold to zero after the M-step.
However, such a modification would have a limited impact on
the speed of convergence as only a very small fraction of wt’s are
zeroed at each pruning step. We propose a novel pruning scheme
which significantly improves the convergence rate by zeroing a
large percentage of wt’s without compromising the optimality of
the solution. We note that if wt a0, then xt is a cluster center and
we expect xt to be assigned with higher probability to its own
cluster than to any other one. This can be translated as follows:
sat, gtt Zgts or wt ¼ 0. Therefore, we propose the following
pruning step:

if there exists an index s such that gtt ogts,

then set wt ¼ 0: ð4Þ

3.2. Comparative results

On synthetic data: When a pruning step is introduced into the
algorithm, convergence to the optimal solution (in a maximum-
likelihood sense) is not guaranteed. However, experiments show
that the log-likelihood of the solutions reached are on par with
those obtained when running the EM algorithm without the
pruning step. In addition, convergence is sped up with pruning
as it sets a large number of wt’s to zero. We illustrate the
performance of the convex clustering approach on synthetic data,
which consists of 4000 points drawn at random from four
isotropic Gaussians. Each Gaussian produced 1000 points and
was isotropic with s¼ 1 in a 2D space. Results are shown in Fig. 3.
The left plot of the figure shows that the solution using the
EM algorithm of [23] contains 150 clusters, and the solution is
obtained after 2 min with a log-likelihood value of �6.2847eþ03.
The right plot of the figure shows that the solution using the EM
algorithm with our proposed pruning mechanism contains four
clusters, and the solution is reached after 3 s with a log-likelihood
value of �6.2814eþ03. Therefore, the EM algorithm using our
proposed pruning method as compared with that of [23] results in
faster convergence with a similar log-likelihood value.

On real data: We illustrate the performance of our approach on
real data in the context of concept transfer. In Fig. 4, we
compare concept-transferred images when an input image
GMM is initialized using: (a) agglomerative clustering where
the number of Gaussians N is set to an ad-hoc value of 16,
which is a good general value; (b) agglomerative clustering where
N is set to 1, after visual inspection of the points distribution
of the input image showed 1 to be a reasonable value;
and (c) convex clustering where the number of Gaussians is
determined automatically using our proposed pruning mechan-
ism. In each case, the resulting GMM is used to initialize a MLE
estimation of the GMM, which re-estimates the means of the
Gaussians and estimates their covariances matrices. The first row
of Fig. 4 shows the input image and its GMM for (a), (b) and (c).
The second row shows the target concept, represented by a
sample of associated colors, and its GMM for (a), (b) and (c).
The last row shows the concept transfer results in each case.
Notice that when an input image GMM of N¼16 is used, artifacts
occur in the transfer due to the over-segmentation of the image
regions resulting from too many Gaussian components. The
convex clustering approach automatically sets N¼1 and conse-
quently no artifacts in the transfer results can be seen. Therefore,
this method can be seen as reducing redundancy by retaining
only those sample points which are sufficient for explaining
the data.



Agglomerative Clustering

Input Image Input model for N = 1 Input model for N = 1

spicy Target model for N = 16 Target model for N = 16 Target model for N = 16

Output Image

Agglomerative Clustering Convex Clustering

Input model for N = 16

Output Image Output Image

Fig. 4. Comparison between agglomerative and convex clustering: (a) shows agglomerative clustering for an ad-hoc number of N¼16 clusters. The output image in this

case contains significant artifacts due to an overly granulated clustering of the input image chromatic data. The distribution of the data must be known beforehand in order

to set N¼1 for the input image data (shown in (b)). As shown in (c), convex clustering automatically generates N¼1 clusters for this data.

4

3

2

1

0

-1

-2

-3

-4
-4 -3 -2 -1 0 1 2 3 4

4

3

2

1

0

-1

-2

-3

-4
-4 -3 -2 -1 0 1 2 3 4

Fig. 3. Solutions found by the convex clustering algorithm using (a) the pruning mechanism of [23] after 2 min; (b) the proposed pruning mechanism after 3 s. The small

red circles show the cluster centers, i.e. those points xt with a non-zero wt. The blue circles centered on the cluster centers have a radius which is proportional to the wt

value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

N. Murray et al. / Computers & Graphics 36 (2012) 622–634626
4. Automatic concept transfer

Our method for automatic concept transfer aims to enable a user
to modify any input image such that the modified version conveys a
desired concept. The concept is chosen by the user from a selection
of concepts described in natural language, such as ‘‘earthy’’.
As illustrated in Fig. 2, our method consists of four main stages:
1.
 modeling the target concept (described in Section 4.1);

2.
 modeling the input image (described in Section 4.2);
3.
 mapping input colors to target colors (described in Section 4.3);

4.
 color transfer (described in Section 4.4).

As a fifth optional stage, the user may adjust the level of concept
transfer. We describe these stages next.

4.1. Modeling the target concept

One of the main advantages of concept-based color transfer is
that the user does not have to find an appropriate target or
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reference image. Instead, he/she only needs to specify the target
concept with a natural language tag. However, a non-negligible
challenge is represented by finding the right colors to represent
such concepts.

Research in this domain is hindered by the shortage of data
annotated with abstract concepts arising from emotional, mood,
stylistic or aesthetic labels. Furthermore, due to the nature of
these concepts, such data tend to be ‘noisy’ in the label space:
user preferences differ, the concepts themselves are difficult to
define in a consistent manner, and any data actually labeled in
this way is often incomplete. Despite these difficulties, research
has been conducted into linking color to abstract categories [5,6].
Most methods, however, have so far been aimed at associating
color name tags to single colors. This was performed either
through user tests in constrained environments [24–27] or by
training statistical models using data collected on the web [28].
To our knowledge, only very few studies [2,3,29] explored the
relationship between perceived colors and the emotion induced,
but the results again involved a limited set of individual colors
and categories. We first start by describing how we annotate
colors in Section 4.1.1 and then we move on to describe how the
target concept models are created in Section 4.1.2.
4.1.1. Annotating colors

In the presented work, we defined a vocabulary of natural
language tags (typically adjectives) which describe 15 target
concepts (such as capricious, classic, cool or delicate; see Fig. 5
for the complete list) that are indicative of some of the moods
which people may associate to an asset when visualizing combi-
nations of colors in images or documents.

We use two databases of color schemes as model data. The
first database, which we call ‘‘CC’’, was obtained from the book
‘‘Communicating with Color’’ [30], an authoritative guide to color
combinations and color principles. These schemes are labeled
with 1 of the 15 concepts. The schemes are annotated by
experienced color consultants. There are 24 schemes assigned to
each concept, and each palette contains three swatches. There-
fore, for this database, each concept has 72 exemplar colors. Fig. 5
shows examples of schemes from CC. As can be seen, the visual
coherence is high. However, for each category/concept we have a
small number of examples.

The second database, which we call ‘‘CL’’, comprises 22,000
schemes downloaded from Color Lovers, a popular social network
for graphic designers [31]. These schemes were downloaded if
they were tagged with keywords associated with a concept
contained in CC. The schemes were tagged by amateur designers
and are therefore weakly annotated.

This leads to two very distinct data sets with two key
challenges: the first set has a minimal number of examples per
class; the second is richer, but more noisy in the textual
annotations.
capricious classic cool delicate earthy elegant luscious playfu

Fig. 5. Examples of schemes from the Communicating with Color database for each of

has 24 associated schemes, 10 of which are shown.
Since we want to build a model to synthesize the colors of the
target concepts, we used an approach similar to that described
in [6]. Specifically, we first trained a supervised learning method
[32] using the color schemes of CC. We then employed the
resulting model to classify the color schemes of CL according to
the 15 target concepts. We characterized each color palette as a
sequence of colors, which are referred to as color swatches. Each
swatch is represented by a 3D vector in a given color space, such
as RGB, HSV or CMY. A palette of c color swatches is represented
by a c�3 dimensional vector as such: ½x1,: :,xk,: :,xc�, where xk is a
3D vector denoting a single color swatch. In the case of the palette
databases used, the CC and CL schemes have three and five
swatches, respectively. After examining several feature combina-
tions, we found that a feature vector resulting from the con-
catenation of the means of the swatches for each channel in HSV,
Lab and RGB space performed well.

We trained with these feature vectors 15 SVM classifiers in a
one-vs-all configuration. A radial basis function kernel with
default parametrization was used and the models were selected
using 5-fold cross-validation on CC. The resulting 15 models were
then used to classify and score each palette of CL with respect to
the 15 concepts. Finally we retained only those schemes which
were assigned to a concept with probability higher than a given
threshold, Tp. Fig. 6 shows the change in the distribution of the
chromatic content of the ‘‘cool’’ concept for different values of Tp.

After this process was completed, we obtained two datasets of
color palettes, where each palette is associated with 1 of the 15
concepts. We now describe how we use the swatches of these
palettes to create concept models.
4.1.2. Creating the model

The most straightforward method to model the concepts is to
fit a statistical model such as a GMM using the swatches as
observations. This ensures that the concept is well represented by
a combination of colors as compared with one- or two-color
representations of concepts as in [5,29,33]. In a few cases, the
number of swatches (and therefore colors) associated with a
concept is very small and therefore a GMM cannot be fit to them.
In this case a good alternative is to use a non-parametric
technique such as the Parzen Window or Kernel Density Estima-
tion (KDE). We detail these two techniques which are developed
and tested in our framework.

Kernel-based Density Estimation: We interpret the colors asso-
ciated with the target concept as a sequence of i.i.d. random
samples x1,: :,xi,: :,xn drawn according to some unknown prob-
ability law p(x). To estimate the density distribution of these
samples we perform convex clustering on colors xi using the
approach described in Section 3. The number of cluster centroids
N is thus automatically determined. The covariance matrix of
a Gaussian component, S, is diagonal with s2 set to 100 for both
a and b channels.
l robust romantic sensual serene spicy spiritual warm

the 15 concepts considered. Each scheme comprises three swatches. Each concept
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the web version of this article.)
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Gaussian Mixture Model Estimation: For concepts with a suffi-
cient number of distinct color schemes, we learn a probabilistic
model, namely a GMM. The parameters of the GMM are denoted
by ltgt

¼ fwtgt
i ,mtgt

i ,Stgt
i ,i¼ 1, . . . ,Ng where wtgt

i , mtgt
i , and Stgt

i are,
respectively, the weight, mean vector and covariance matrix of
Gaussian i.

Let X ¼ xt ,t¼ 1, . . . ,T denote the set of observations which are
all the swatches of the schemes associated with the target
concept in the CL database. If q denotes which Gaussian emitted
xt, the likelihood that xt was generated by the GMM is

pðxt9l
tgt
Þ ¼

XN

i ¼ 1

wtgt
i piðxt9l

tgt
Þ, ð5Þ

where piðxt9l
tgt
Þ ¼ pðxt9q¼ i,ltgt

Þ. The weights are subject to the
constraint:

PN
i ¼ 1 wtgt

i ¼ 1. The components pi are given by

piðxt9l
tgt
Þ ¼

e�1=2ðxt�mtgt
i
Þ
0
ðStgt

i
Þ
�1
ðxt�mtgt

i
Þ

ð2pÞD=29Stgt
i 91=2

, ð6Þ

where 9:9 denotes the determinant operator and D denotes the
dimensionality of the feature space. The parameters of the GMM
can be obtained by maximizing the log-likelihood function
log pðX9ltgt

Þ, which is referred to as maximum likelihood estimation
(MLE). The standard approach to MLE uses the EM algorithm. This
algorithm is only guaranteed to converge to a local optimum not to a
global one. The location of convergence is dependent on the initi-
alization parameters. In other words, different initialization condi-
tions will, in general, lead to different schemes. We set the complexity
of the GMM model using the approach described in Section 3.

4.2. Modeling the input image

In order to model the colors of a natural image, it is tradition-
ally assumed that the pixel values represented in a given color
space are generated by a probabilistic mixture model. This model
can be either discrete or continuous. In the discrete case, an image
is modeled through a color histogram. However, such a repre-
sentation is sensitive to quantization errors and setting the
number of bins is not trivial. Therefore we use a mixture model,
namely a GMM, which is the most common continuous model
used in this context. As images produced by today’s cameras
typically contain millions of pixels, observation data for the GMM
are abundant. The GMM is trained in an analogous fashion to that
described in Section 4.1, the only difference being that the input
image pixel values are used as the observation data in the
maximum likelihood estimation.

4.3. Mapping input colors to target colors

We relate the chromaticities of the target and input image
models through a mapping which finds soft correspondences
between their Gaussian components. An example of a mapping
is shown in Fig. 2 for a sample input image and the concept
‘‘earthy’’. The circles with a point at their centers represent
Gaussian components. The points are at the mean values of the
components, while the length of the axes of the ellipses corre-
sponds to the standard deviation along their dimensions. Corre-
spondences between the components are represented by arrows.

To perform the association we propose two methods: the first
is based on the EMD [34], which we refer to as EMD-based
mapping (EBM), while the second is a learning technique which
we refer to as adaptation-based mapping (ABM).

EMD-based mapping (EBM): First, we create the concept and
input color models using the methods described in Sections
4.1 and 4.2, respectively. To associate input and concept model
swatches, we turn to the EMD algorithm, which attempts to solve
the following optimization problem:

min
ff i,jg

XM
i ¼ 1

XN

j ¼ 1

f i,jDistðsin
i ,sc

j Þ;

subject to
XN

j ¼ 1

f i,j ¼win
i , i¼ 1, . . . ,M ðC1Þ,

XM
i ¼ 1

f i,j ¼wc
j , j¼ 1, . . . ,N ðC2Þ, ð7Þ

where M is the number of swatches in the input model and Dist is
the cost matrix containing the Euclidean distance between
each input swatch sin

i and concept swatch sc
j . The quantities win

i

and wc
j are the weights for the i-th input and concept model swatch,
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respectively. The flow f i,j can be considered to be the part of swatch
sin

i which is mapped to sc
j . The target swatch stgt

i for the input swatch
sin

i is computed as a weighted average of the concept swatches, where
the weight for sc

j is f i,j. Freedman and Kisilev [10] introduced the idea
of mapping input swatches to concept swatches using EMD-derived
flows. However, in their case, input and target models were repre-
sented by color histograms. Constraint (C1) requires that each input
model swatch has flows that sum to its weight. Similarly, constraint
(C2) requires that each concept model swatch has flows that sum to
its weight. Therefore each concept swatch is guaranteed to be
associated with at least one input swatch and vice versa. This ensures
that each input color is transferred to a concept color and, in addition,
that all concept colors are used.

Adaptation-based mapping (ABM): Rather than the method
described in Section 4.2, we obtain the input image model by
adapting the concept GMM using the Maximum A Posteriori

(MAP) criterion. This representation of the input model is moti-
vated by the fact that the Gaussian components of an adapted
GMM maintain a one-to-one correspondence with the original
GMM, as described by Reynolds et al. [35]. The input GMM is
initialized using the parameters of the concept GMM and the set
of input image pixels X ¼ fxt ,t¼ 1, . . . ,Tg are used as new observa-
tions for the input GMM estimation. The EM algorithm is used for
the MAP estimation and consists of two steps:
�

Fig
ver
An Expectation (E) step that computes for observation xt the
occupancy probability giðxtÞ, which is the probability that xt has
been generated by Gaussian i. This probability may be formulated
as giðxtÞ ¼ pðq¼ i9xt ,l

in
Þ, where q is the Gaussian which has

generated xt. The posterior occupancy probability is computed
based on the current estimates of the parameters as such:

giðxtÞ ¼
win

i piðxt9l
in
ÞPN

j ¼ 1 win
j pjðxt9l

in
Þ
: ð8Þ
�
 A Maximization (M) step where the parameters are updated
based on the expected complete-data log-likelihood given the
occupancy probabilities computed in the E step:

ŵ
in
i ¼

PT
t ¼ 1 giðxtÞþt

TþNt
; ð9Þ

m̂ in
i ¼

PT
t ¼ 1 giðxtÞxtþtmtgt

iPT
t ¼ 1 giðxtÞþt

; ð10Þ

Ŝ
in

i ¼

PT
t ¼ 1 giðxtÞxtxt

0 þtfStgt
i þm

tgt
i mtgt

i gPT
t ¼ 1 giðxtÞþt

�m̂ in
i ðm̂

in
i Þ
0: ð11Þ

Here t is the adaptation factor which balances the new observa-
tions against the a priori information. We set this value to 10.
Input image K=0 K=0.25

. 7. The effect of varying K on concept transfer for ‘‘warm’’. For K¼0 the image is u

sion of the output image. Transfer was performed using GMM-based concept mode
Gaussian components from the concept model for which there are
no new observations from the image pixels will remain
unchanged in the final input model, and will have negligible
weights. Due to the one-to-one correspondence between input
and concept swatches, only those input swatches with non-
negligible weights, and thus their corresponding target concept
swatches, will affect the color transfer.

4.4. Color transfer

The color-transferred image is obtained in the Lab color space
by applying an affine transformation to the ab channel values of
the input image pixels. The lightness channel values of the output
image pixels are set to be the same as those of the input image
pixels. The transformation is calculated given the ab values of the
swatch colors of the input and target schemes. We match the
statistics of the i-th input swatch to those of the i-th target swatch
using a linear transform of the form:

Ai ¼ ðS
tgt
i Þ

1=2
ðSin

i Þ
�1=2; Bi ¼ mtgt

i �m
in
i Ai, ð12Þ

where Stgt
i and Sin

i denote the covariance matrices of the i-th
components of the models representing the target and input
schemes, respectively, and mtgt

i and min
i denote their means. Note

that since we choose the covariances to be diagonal, ðStgt
i Þ

1=2 and
ðSin

i Þ
�1=2 are uniquely defined. The color transfer functions used in

the affine transformation are

AðxÞ ¼
XN

i ¼ 1

giðxÞAi; BðxÞ ¼
XN

i ¼ 1

giðxÞBi: ð13Þ

Finally, the transformation is applied to the ab channel values of
the input image pixel xin to obtain the corresponding values in the
output image pixel, denoted by xout:

xout ¼ AðxinÞxinþBðxinÞ: ð14Þ

Different levels of transfer can be performed by introducing a
parameter K into the affine transformation using the following
formulations of Ai and Bi:

Ai ¼ KðStgt
i Þ

1=2
ðSin

i Þ
�1=2
þð1�KÞI;

Bi ¼ Kmtgt
i þð1�KÞmin

i �m
in
i Ai, ð15Þ

where I is the identity matrix. Using these formulations for K¼1,
Ai and Bi revert to the original case (Eq. (12)), while for K¼0, Ai

and Bi revert to the identity matrix and the null matrix, respec-
tively, so that the input image pixels are unchanged. Therefore, by
varying K from 0 to 1, the level of concept transfer may be
controlled in a linear fashion. Fig. 7 illustrates the effect of K on
color transfer. Note that K¼1 for all the other results shown in
this paper.

Since the image pixel representation values in the channels
of the Lab color space are not completely decorrelated [36],
K=0.5 K=0.75 K=1

nchanged while for K¼1 full transfer has been applied, producing the ‘‘warmest’’

ls.



Output image with brightness preservationInput image Output image

Fig. 8. Row 1: after concept transfer with ‘‘playful’’, the sun in the original image has been recovered from the output image and fewer color gradient artifacts are visible.

Row 2: after concept transfer with ‘‘sensual’’, the contrast between various design elements is lost in the output image. It is then recovered after the brightness

preservation step. Transfer was performed using KDE-based concept models. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Target Concept

Romantic

Spicy

Cool

Luscious

Input Image KDE-based concept model GMM-based concept model

Fig. 9. Comparing our method in the cases of KDE- and GMM-based models for the concepts ‘‘romantic’’, ‘‘spicy’’, and ‘‘luscious’’ with EMD-based transfer. The output

images differ depending on the method used to create the concept model. However, all results are consistent with the color scheme of the associated concept.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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our transfer method may still modify the brightness of pixels in
the output image. These modifications might involve important
features or design elements of the image thus altering its
semantic content (see Fig. 8) or impacting the feel and meaning
of the input image. In addition, the converse problem exists
wherein features not present in the input image, such as sharp
color gradients, are observed in the output image as artifacts. We
alleviate these issues by preserving the brightness of the input
image within the color transferred image as follows. First we scale
the transferred image pixel representation values in the R, G, and
B channels to attain the brightness of the input image. However, a
few pixels might be assigned to values 4255 for one or more
channels. We cap such out-of-gamut pixels to 255. We then
increase the remaining in-gamut pixel values by amounts propor-
tional to their contribution to the brightness channel, so as to
compensate for the capping. This cap-and-increase procedure is
repeated until all pixels are in-gamut. Fig. 8 shows the improved
results obtained by preserving the image brightness.
5. Results

We show concept transfer results using graphic design, photo-
book template, and natural images. We choose images with a
Target Concept

Romantic

Spicy

Cool

Luscious

Original Image G

Fig. 10. Comparison between EBM and ABM using GMM-based concept models. Note t

EBM-based results are more aggressive. This is due to constraints C1 and C2, described i

vice versa. (For interpretation of the references to color in this figure legend, the reade
variety of scene content and with both smooth and intricate
textures. For a MATLAB implementation running on an Intel Core
2 Duo CPU at 3.00 GHz with 2 GB RAM, a typical run time for an
image of size 768�1024 pixels is 12 s.

5.1. KDE versus GMM concept models

Fig. 9 shows results for our approach using KDE- or GMM-
based concept models for EMD-based transfer. More results are
provided in the supplementary material. While there are differ-
ences between the results achieved with these two concept
modelling techniques, all results are consistent with the color
schemes of the concepts.

5.2. EBM versus ABM-based color transfer

Fig. 10 compares results using EMD-based mapping (EBM) and
adaptation-based mapping (ABM). With ABM, concept swatches
that correspond to input swatches with negligible weights do not
affect the color transfer. This means that only the concept colors
with some similarity to input colors are used to perform concept
transfer. With EBM on the other hand, constraint (C2) ensures
that all concept colors are used in proportion to their weights in
the concept model. Therefore EBM is a more aggressive color
MM + EBM GMM + ABM

hat for the examples showing transfer of the ‘‘spicy’’ and ’’luscious’’ concepts, the

n Section 4.3, which require all concepts colors to be mapped to an input color and

r is referred to the web version of this article.)
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transfer, which may be desirable for non-photorealistic applica-
tions. However if a more natural result is required, Bayesian
adaptation is a suitable mapping alternative.

5.3. Comparison to state-of-the-art

In order to compare to previous work, we choose Yang and
Peng’s mood-transferring method [2] as a baseline because it is
automatic and does not require user scribbling as in [3]. Fig. 11
shows results for a comparison between our method, with KDE-
based concept models and EBM, and Yang and Peng’s mood-
transferring method [2]. For more results the reader is referred to
the supplementary material. The method of [2] defines a mood or
concept with one associated color. The mood of an image is taken
to be the one whose predefined associated color is most similar to
the most frequent color of the image’s mood color histogram. The
latter comprises 24 bins corresponding to the 24 color moods
defined. To transfer the mood of a target image to an input image,
the colors of the input image in RGB space are rotated such that
the principal color axis is aligned to that of the target image.
A matching technique between the modified input image and
target image histograms is then applied. This technique iteratively
switches colors in input bins that are over-represented with
respect to the target bin with colors in bins that are under-
represented, by adjusting the colors of the pixels assigned to these
Concept Input image

Welcoming/
Warm

Earthy

Calm/Serene

Romantic

Target image

Fig. 11. Comparing to [2] when our method uses KDE-based concept models with E

welcoming/warm and earthy examples, both input images satisfy the dominance cons

All target images satisfy the dominance constraint.
bins appropriately. To select a target image, a database of images
with pre-computed mood definitions are used. The number of
pixels in the second highest frequency bin must be less than 75%
of the pixels in the highest frequency bin of the histogram of each
image. This is referred to as a dominance constraint and is
imposed on both the input and the target images used. It ensures
that the mood colors dominate in the images, thus leading to an
unambiguous mood transfer. However, this constraint greatly
restricts the input and target images available to a user of this
method. The target images used in Fig. 11 satisfy this constraint.
For the ‘‘welcoming’’/‘‘warm’’ example, the input image satisfies
the dominance constraint, while the ‘‘calm’’/‘‘serene’’ and ‘‘roman-
tic’’ examples illustrate the more general case in which the input
images do not satisfy the constraint. As the ‘‘romantic’’ example
shows the output image has many artifacts due to the histogram
matching and it contains a smaller variety of colors as compared
to the input image. In addition, the non-probabilistic concept
model of Yang and Peng produces results which, though
conforming with the target image, are often particularly unsuc-
cessful with color gradients. The ‘‘welcoming/warm’’ example is
one such case. Our concept model, however, is multi-modal
probabilistic, and therefore allows for a richer and more extensive
variety of concept colors. For this reason the approach is flexible
enough for transfers involving input images with varied color
content.
Proposed MethodTarget color
schemes

Yang & Peng

BM. A few schemes from each concept are shown in the fourth column. For the

traint, while the constraint is not satisfied for the calm/serene and romantic ones.



Fig. 12. Interface of the user study. Two examples of the 30 image pairs presented

to user study participants are shown. Users were instructed to tick the box

corresponding to the image they considered to be more consistent with the concept.

Table 1
BTL model parameters for each concept: u is a measure of the

ability of the algorithm to transfer the concept; P is the probability

of the user choosing the transferred image as more consistent with

the concept.

Concept u P

Romantic 9.0000 0.9000

Sensual 7.0000 0.8750

Serene 5.6667 0.8500

Capricious 4.0000 0.8000

Cool 3.4444 0.7750

Earthy 3.0000 0.7500

Classic 3.0000 0.7500

Spicy 3.0000 0.7500

Playful 2.0769 0.6750

Warm 1.5000 0.6000

Spiritual 0.7391 0.4250

Delicate 0.6667 0.4000

Luscious 0.4815 0.3250

Robust 0.3333 0.2500

Elegant 0.2903 0.2250
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5.4. User study

To evaluate our method’s ability to automatically transfer
concepts to images, we performed a user study. We first collected
two test images for each of the 15 concepts listed in Section 4.1.
These images were chosen such that their semantic content was
consistent with their concept. Concept transfer was performed on
these 30 images, using GMM-based concept models with EMD-
based color transfer. This resulted in 30 pairs of images, each pair
containing an original and a color-transferred image. These image
pairs constituted the stimuli of the user study. The pairs were
displayed side-by-side on a 1400 computer screen with 1440�900
resolution. The positions of the images in each pair, either left or
right, were randomly assigned.

We invited 20 participants, all with normal or corrected-to-normal
color vision, to participate in the user study, which was conducted in
the same room and on the same computer for each participant. None
of the participants were design professionals. For each of the 30
image pairs, these users were instructed to select the image they
considered to be more consistent with the concept. Note that the
users were provided only with the name of the concept, and were not
shown the color schemes associated with that concept. Fig. 12
illustrates the interface of the user study, showing 2 of the 30 slides
presented to the participants. The users were not informed or aware
of the manner in which the images were obtained, that is, that one of
the images in each pair was a version of the other image, in which the
color content had been modified.

Each image pair was therefore compared 20 times, resulting in
40 pair-wise comparisons per concept. We used these compar-
isons to fit a probabilistic choice model, namely the Bradley–
Terry–Luce (BTL) model, that allows for a quantitative evaluation
of our method’s performance for each concept. The BTL model for
a concept gives a measure of the degree of preference for the
concept-transferred image. This measure is set relative to
the original image, such that values above 1 indicate that the
transferred image is more consistent with the concept than
the original image and values below 1 indicate the contrary. The
value of this measure, denoted by u, and the probability, P, of a
user preferring the concept-transferred image are reported in
Table 1, for each concept. For 10 of the 15 concepts, the concept-
transferred image was preferable. The preference for the trans-
ferred image was especially high for concepts which are strongly
associated with certain colors. For instance, our algorithm per-
formed best for the ‘‘romantic’’, ‘‘sensual’’ and ‘‘serene’’ concepts,
which are associated with pink, red and blue, respectively.
As shades of these colors were dominant in our learned color
schemes for these three concepts, the users consistently chose the
transferred image. The five concepts for which the original image
was preferred were ‘‘elegant’’, ‘‘robust’’, ‘‘luscious’’, ‘‘delicate’’ and
‘‘spiritual’’. None of these concepts are strongly associated with
specific colors, such that it is difficult to transfer these concepts to
an image solely by manipulating its color content.

We approximated the likely performance of ABM-based con-
cept transfer in the user study by comparing its output images
both to the 30 input images used in the user study and the
transferred images used in the study, which were obtained with
EBM-based concept transfer. First, we computed GMM color
models for the output images obtained with both techniques, as
well as for the input image. We computed the Bhattacharyya
distance between the input image color model and each of the
output image color models. The mean distance between the input
models and the EBM-based output models for the 30 images was
0.7219, while the mean distance between the input models and
the ABM-based output models was 0.6362. This indicates that, as
expected, the ABM-based output images are in general closer to
the input images in color composition than the EBM-based output
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images. We also computed the distance between the models of
the output images obtained for the two mapping methods and
found the mean distance to be 0.2476. Therefore, because the
output images are in general much closer to each other than they
are to the input image, it is reasonable to assume that the results
of the user study are applicable to ABM-based transfer.

5.5. Limitations of the method

Because the lightness of pixels in the input image are main-
tained in their corresponding output pixels, concepts whose
colors are particularly light or dark, such as ‘‘delicate’’, or ‘‘robust’’
are sometimes not well transferred.
6. Conclusions

We presented a novel framework for transferring concepts,
specified by natural language, to images. The framework used a
convex clustering algorithm to automatically set the complexity of
models of the chromatic content of input images and target concepts.
A pruning mechanism was introduced to ensure fast convergence of
the clustering algorithm. The framework is flexible in that it may use
either an EMD-based method or a MAP adaptation-based method to
map input image chromaticities to target concept chromaticities. The
mapping method is chosen based on whether the user desires a more
or less photorealistic result. Our approach also provides flexibility to
the user with the option of adjusting the level of concept transfer to
his/her liking through a single parameter.

A user study showed the efficacy of the transfer of concepts to
images using our framework. The user study is different from
previous ones in the literature in that it studies the transfer of the
concepts themselves rather than the color schemes, such as in [3].

An unresolved challenge in color and concept transfer is
ensuring that contiguous regions of an image, which may have
the same underlying color but appear differently due to illumina-
tion conditions, are recolored to the same color. This is especially
difficult when shadows or highlights are present. In the future, we
would like to address this challenge by introducing color con-
stancy techniques and spatial constraints into our framework.
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