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versitat Autònoma de Barcelona.

Copyright c© 2013 by Shida Beigpour. All rights reserved. No part of this publication
may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopy, recording, or any information storage and retrieval system, without
permission in writing from the author.

ISBN: 978-84-940530-9-2

Printed by Ediciones Gráficas Rey, S.L.
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Abstract

More realistic and accurate models of the scene illumination and object reflectance can
greatly improve the quality of many computer vision and computer graphics tasks. Us-
ing such model, a more profound knowledge about the interaction of light with object
surfaces can be established which proves crucial to a variety of computer vision applica-
tions. In the current work, we investigate the various existing approaches to illumination
and reflectance modeling and form an analysis on their shortcomings in capturing the
complexity of real-world scenes. Based on this analysis we propose improvements to
different aspects of reflectance and illumination estimation in order to more realistically
model the real-world scenes in the presence of complex lighting phenomena. As applica-
tions of improved reflectance and illumination estimation we show examples of improved
automatic white balance, scene relighting, and object re-coloring. The proposed theory
can be employed in order to improve other fields of computer vision, such as color nam-
ing, object detection, recognition, and image segmentation.

The vast majority of the existing computer vision applications base their methods on
simplifying assumptions such as Lambertian reflectance or uniform illumination to be
able to solve their problem. However, in real world scenes, objects tend to exhibit more
complex reflections (diffuse and specular) and are furthermore affected by the character-
istics and chromaticity of the illuminants. In this thesis, we incorporate a more realistic
reflection model. To address such complex physical phenomena, we extend the stan-
dard object reflectance models by introducing a Multi-Illuminant Dichromatic Reflection
model (MIDR). Using MIDR we are able to model and decompose the reflectance of
an object with complex specularities under multiple illuminants presenting shadows and
inter-reflections. We show that this permits us to perform realistic re-coloring of objects
lit by colored lights, and multiple illuminants.

Furthermore, we propose a local illuminant estimation method in order to model
scenes with non-uniform illumination (e.g., an outdoor scene with a blue sky and a yel-
low sun, or a scene with indoor lighting combined with outdoor lighting through a win-
dow). The proposed method takes advantage of a probabilistic and graph-based model
and solves the problem by re-defining the estimation problem as an energy minimization
problem. This method provides us with local illuminant estimations which significantly
improve over state-of-the-art color constancy methods.

Moreover, we captured our own multi-illuminant dataset which consists of complex
scenes and illumination conditions both outdoor and in laboratory conditions. We show
that our approach achieves improvement over state-of-the-art methods for local illumi-
nant estimation. We further propose the use of synthetic data to facilitate the construction
of datasets and improve the process of obtaining ground-truth information. We proceed
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by comparing state-of-the-art intrinsic estimation and decomposition methods using our
computer-generated dataset for the case of more complex objects and illumination condi-
tions (e.g., specularities, inter-reflections and shadows).



Resum

Poder tenir models de la il·luminació de la escena i la reflectància dels objectes més
realistes podrien millor de manera significativa moltes de les tasques de la visió per com-
putador i els gràfics per computador. Usant un d’aquests models es podria obtenir un
coneixement més profund sobre la interacció de la llum i les superfı́cies dels objectes en
la vida real, que és crucial per a una gran varietat de aplicacions en visió per computador.
En el present treball, investiguem les diferents aproximacions existents al modelatge de
la il·luminació i reflectàncies, fen-te un anàlisis dels seus defectes a l’hora de capturar la
complexitat de les escenes del món real. Basant-nos en aquest anàlisi, proposem millores
en diferents aspectes de l’estimació de la il·luminació i la reflectància per tal de modelar
més realistament les escenes reals en casos d’efectes d’il·luminació complexa. Com a
aplicacions de la millora de la estimació de la reflectància i il·luminació, mostrem exem-
ples de millora de balanç de blanc automàtic, re-il·luminació d’escenes, i re-acoloriment
d’objectes. La teoria proposada pot ser usada per a la millora en altres camps de la visió
per computador com ara donar noms als colors, detecció d’objectes, reconeixement i seg-
mentació d’imatges.

La gran majoria de les aplicacions existents en visió per computador basen els seus
mètodes simplificant les assumpcions, com ara assumint reflectàncies Lambertianes o
il·luminació uniforme, per tal de ser capaços de resoldre el problema. No obstant, en es-
cenes del món real els objectes solen mostrar reflexions més complexes (difuses i especu-
lars) i a més, estan més afectades per les caracterı́stiques i cromaticitats dels il·luminants.
En aquesta tesi incorporem un model de reflexió més realistes. Per tal d’abordar aquest
fenomen fı́sic complex, estenem els models de reflectància d’objectes estàndards, intro-
duint un model de reflexió dicromàtica multi-il·luminant (MIDR). El fet d’usar MIDR
ens permet ser capaços de modelar i descomposar les reflectàncies d’un objecte amb es-
pecularitats complexes sota varies il·luminants, presentant ombres i inter-reflexions. De-
mostrem que d’aquesta manera podem realitzar re-colorejats d’objectes il·luminants per
llums de colors i per múltiples llums de manera més realista.

A més a més, proposem un mètode d’estimació local de l’il·luminant per tal de mod-
elar escenes que presenten una il·luminació no uniforme (p.ex: una escena exterior amb
un cel blau i un sol groc, o una escena d’il·luminació d’interior combinada amb una llum
d’exterior provinent d’una finestra). El mètode proposat aprofita un model probabilı́stic
basat en grafs i resol el problema redefinint la estimació del problema com a un problema
de minimització d’energies. Aquest mètode en dona estimacions locals de l’il·luminant
que, de forma significativa, milloren l’estat de l’art dels mètodes de constància de color.

Una altra aportació és la captura d’un nou conjunt de dades multi-il·luminants que
consisteix d’escenes complexes i amb condicions d’il·luminació tant exterior com en
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x RESUM

condicions de laboratori. Mostrem que la nostra proposta aconsegueix millores sobre
l’estat de l’art per a l’estimació local de l’il·luminant. A més proposem l’ús de dades
sintètiques per a facilitar la construcció de conjunts de dades i aixı́ millorar el procés
d’obtenció de dades amb informació de comparació. A continuació comparem els metodes
de estimació d’imatges intrı́nseques i descomposició de l’estat de l’art usant el nostre con-
junt de dades generat per ordinador per al cas de condicions més complexes de objectes i
il·luminació (p.ex.: especularitats, inter-reflexions, i ombres).



Resumen

Los modelos más realistas y precisos de la reflectancia de objetos y la iluminación de es-
cenas puede mejorar significativamente la calidad de muchas tareas en campos de gráficos
por ordenador y visión por computador. Empleando tales modelos, se puede alcanzar un
conocimiento más profundo sobre la interacción de la luz con las superficies de los obje-
tos, que prueben ser cruciales para una variedad de aplicaciones de visión por ordenador.

En el presente trabajo, investigamos los diferentes enfoques existentes para el mode-
lado de la reflectancia e iluminación, y analizamos sus deficiencias para capturar la com-
plejidad de las escenas del mundo real. En base a este análisis se proponen mejoras para
los diferentes aspectos de la estimación de la reflectancia y de la iluminación con el fin
de modelar de manera más realista las escenas del mundo real en presencia de fenómenos
complejos de iluminación. Como aplicaciones de la estimación mejorada de la reflectan-
cia e iluminación, se muestran ejemplos en la mejora del balance automático de blanco,
la re-iluminación de escenas, y la recolorización de objetos. La teorı́a propuesta se puede
emplear con el fin de mejorar otros campos de la visión por computador, tales como el
nombrado automático del color, la detección de objetos, reconocimiento y segmentación
de imágenes.

La gran mayorı́a de las aplicaciones existentes de visión por computador basan sus
métodos en la simplificación de supuestos tales como la reflexión Lambertiana o ilumi-
nación uniforme para poder solucionar sus problemas. Sin embargo, en las escenas del
mundo real, los objetos tienden a exhibir reflexiones más complejas (difusas y especu-
lares), y además se ve afectada por las caracterı́sticas y la cromaticidad de los iluminantes.
En esta tesis, se incorpora un modelo de reflexión más realista. Para hacer frente a estos
fenómenos fı́sicos complejos, extendemos los modelos estándares de reflectancia de ob-
jetos mediante la introducción de un modelo de reflexión multi-Iluminante dicromático
(MIDR). Usando MIDR somos capaces de modelar y descomponer la reflectancia de un
objeto con especularidades complejas bajo múltiples iluminantes que presentan sombras e
interreflecciones. Se demuestra que esto nos permite realizar la recolorización de objetos
iluminados por luces coloreadas e iluminantes múltiples.

Por otra parte, se propone un método de estimación local del iluminante para modelar
escenas con iluminación no uniforme (por ejemplo, un escenario al aire libre con un
cielo azul y un sol amarillo, o una escena con iluminación interior combinado con la
iluminación al aire libre a través de una ventana). El método propuesto aprovecha un
modelo probabilı́stico basado en grafos y resuelve el problema volviendo a definir la
estimación como un problema de minimización de energı́a. Este método nos proporciona
estimaciones de iluminante locales que mejoran significativamente respecto a los métodos
del estado-del-arte de la constancia de color.
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Además hemos capturado nuestra propia base de datos multi-iluminante, que con-
sta de escenas complejas y condiciones de iluminación al aire libre y de laboratorio. Se
demuestra que nuestro enfoque logra mejoras sobre los métodos estado-del-arte para la
estimación iluminante local. Asimismo, proponemos el uso de datos sintéticos para facil-
itar la construcción de bases de datos y mejorar el proceso de obtención de información
real. Se procede comparando los métodos del estado-del-arte en la estimación y descom-
posición intrı́nseca usando nuestra base de datos generado por ordenador para el caso de
objetos y las condiciones de iluminación más complejas (por ejemplo, especularidades,
interreflecciones y sombras).
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Chapter 1

Introduction

Recent advances in imaging technologies result in high quality digital images and videos.
Everyday, more and more users are encouraged to use these technologies in their work
and free-time. The smartphone trends and social networks are driving people to rely on
this visual medium to interact with each other. The importance of digital photography has
widely increased the demand for applications which are capable of performing automatic
image understanding.

The light we observe is a mixture of the object color and the illuminant color. Dis-
entangling illumination and object reflectance is one of the fundamental challenges of
computer vision. It is well-known that humans have this capacity, and it is believed to
be fundamental for scene understanding. Disentangling the scene accidental illuminant
from the measured light and estimating the true material reflectance is essential for ac-
curate object recognition. Furthermore, estimating the illuminant in a scene allows for
white-balancing of scenes, which is an important operation in digital cameras.

The interaction of light and object materials is modeled by reflection models. The
underlying physics of these interactions has been long known [57] . However, due to
the high number of unknowns of these models, solving them even for simple scenes is
an under-constrained problem. Therefore, additional constraints are required to estimate
the illuminant and reflectances of a scene. The most used constraint in computer vision is
the Lambertian reflectance model assumption combined with a single illuminant assump-
tion. Later, the model was extended to also include specular reflectance by Shafer [88],
however the single illuminant estimate was preserved. In many situations however these
basic models fail to describe the reality of the reflectances in the scene. Therefore in this
thesis we investigate reflectance estimation and illuminant estimation in complex lighting
situations.

1
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Figure 1.1: Examples of multi illuminant scenes. (left) A person blocking the white
sunlight, resulting in a blue shadow illuminated by the sky. (middle) Mixture of indoor
and outdoor illuminants. (right) Artificial lighting environment with various colored light
sources.

Figure 1.2: An example of image formation using the Phong model. From left to right: the
ambient, diffuse, and specular components and the final image formed by their summation
(the image is taken from a work by Bradley Smith).

1.1 Illumination and Object Reflectance Modeling

In real world applications, objects tend to exhibit more complex reflections due to shad-
ows, highlights, inter-reflections, and are furthermore affected by the characteristics and
chromaticity of their illuminant (see Figure 1.1). To address such complex physical phe-
nomena, more complex reflection models are required. Using these models, more pro-
found knowledge of light interaction with objects surfaces can be established which is
crucial to a variety of computer vision applications.

Even though complex lighting situations have received more attention over the last
years ( [8,46,70]), there are still many open research questions. In this thesis we focus on
three aspects related to computer vision in complex - more realistic - lighting situations.

1.1.1 Reflectance and illumination decomposition in complex scenes

When a ray of light hits an object surface, various phenomena occur regarding the scene
optics. Part of the energy of the light is absorbed by the object and part of it is reflected.
The reflection from the object mainly occurs in two ways, namely: specular, that is the
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mirror-like reflection directly from the surface according to the surface normal direction;
and diffuse which is the scattering of the light from the rough surface. Often, for the sake
of simplicity, in the literature, the surface is assumed to be completely opaque and not
a complete mirror. For the both types of reflection, the angle between the ray and the
surface normal, plays an important role. Further, the viewing angle to the surface normal,
controls the image formation.

Maxwell et al. [70] have extended the physics-based object reflectance model to ac-
count for secondary lights using a four-term equation. Their work is mainly focused on
ambient light which is the cause of colored (bluish) shadows. The authors argue that due
to the high complexity of such model, at the time of illuminant estimation, simplifications
are needed in order to solve the equation in practice. In this sense, they approximate the
model with the assumption of Lambertian surfaces with a two-term equation and define
the ambient lighting to be constant over the whole surface. One of the popular models
for object reflectance used mainly in computer graphics is the Phong model [77] in which
the object image is formed by the diffuse, specular, and ambient reflection components.
Figure 1.2 shows an example of an image constructed using this model.

Even though some more complex reflection models exist, estimating these models
in real-world scenes is still an open problem. Finding algorithms which can estimate
reflection and illumination in complex scenes outside the controlled laboratory settings is
believed to be important for many computer vision applications, such as color description,
photo editing and object recognition.

1.1.2 Color constancy in multi-illuminant scenes

The amount of light for any given wavelength reflected from a surface changes with regard
to the different types of light illuminating the scene. We perceive the color of a surface
to be the same, even though there are changes in the brightness and color of the light. It
would be confusing if the objects would change color when seen under different lights.
We often take advantage of object colors to classify them (e.g. a ripe banana is yellow or
grass is green no matter if viewed in the middle of a sunny day or at the sunset). Our brain
is able to discount the effect of the scene illumination on the object colors reflected from
their surfaces. This relative stability of the colors in human perception is referred to as
color constancy. In computational approaches, this phenomenon is simplified to estima-
tion of the scene illuminant and correcting the image colors to look as if captured under a
canonical light (e.g., white light). Figure 1.3 shows an example of a scene obtained under
varying lighting.

There are various color constancy methods in the literature. One of the most popular
categories is the static approaches in which the scene is modeled by preset parameters.
These methods use the color distribution of the scene pixels to infer the illuminant (e.g.,
averaging the scene colors as in grey-world or using the color of the specular pixels as
in the physics-based approaches). Another popular method is to infer chromaticity of the
illuminant by choosing the light which most likely produces the subspace of color space
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Figure 1.3: Example of scene under various illuminations [6]. Computational color con-
stancy aims to estimate the illuminant color in a scene.

Figure 1.4: Example of existing data sets for color constancy. (left) Example from the
SFU data set [19], (middle) Example from Gehler et al. [37], (right) example from the
Barcelona data set [75].

formed by the input image pixel colors. And finally, there has been recent advancements
in this field using training on image statistics or categories as well as probabilistic ap-
proaches. The Automatic White Balance (AWB) embedded in digital cameras is a very
popular application in digital photography. Most digital cameras use statistical methods
to correct for the scene illumination. While existing color constancy methods appear to
perform well on many image datasets, they mostly fail in the case of complex scenes.
An example, is the case of having multiple illuminants with strong effects in an image.
This will confuse the automatic white balancing method that is trying to estimate one
illuminant for the whole image.

Real-world scenes often exhibit more complex illuminant conditions than what is
commonly assumed in many color constancy algorithms. That is, the illumination is not
completely uniform over the scene. This could be due to multiple lights present in the
scene or simply the ambient light and inter-reflections between objects. In the simplest
case with no specular surfaces and no extra lights, the bounces of the light emitted from
the light source over the various surfaces present in the scene can act as different illumi-
nants since the interaction with the surface can affect the chromaticity of the re-emitted
light1. Another example of a multi-illuminant scenario is an outdoor scene with a blue sky
and a yellow sun, or a scene with indoor lighting combined with outdoor lighting through
a window. Conventional methods often ignore secondary illuminants present in the scene
to simplify the modeling.

As explained above, in many indoor and outdoor scenes multiple illuminants are

1For more details on this phenomenon refer to Section 5.3.3
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present. But due to the complexity of multi-illuminant estimation in practice, so far only
very little work has been dedicated to this problem (e.g., [46]). We believe that proposing
new algorithms for local illuminant estimation is important for scene understanding and
improved white balancing in particular.

1.1.3 Ground Truth data sets in complex lighting

Humans strongly rely on their memory for many cognitive behaviors in their daily life.
The process of learning in human-beings starts from very early age and continues for all
their lives. Using various examples, human brain can extract the main features that mem-
bers of the same class share with each other. Similarly for computers, image datasets play
the crucial role as memory for many computer vision algorithms. While these methods
use training data to estimate their parameters and construct their models of real world, the
performance of the majority of the algorithms needs to be verified using test data. In this
context, a large collection of data with variety in context and imaging conditions along
with an accurate and reliable ground-truth information is a valuable asset.

Currently only very few medium size or relatively large datasets are available with
illumination or reflectance ground-truth data. Figure 1.4 shows some examples of color
constancy datasets( [6, 19, 37]). In most existing color constancy image datasets, the
illumination is assumed to be uniformed and given by a reference in the scene (e.g., gray
ball or Macbeth color checker). Intrinsic image decomposition methods are often trained
and tested on the MIT dataset [49] which is limited only to white light.

The main challenge in constructing datasets of complex lighting scenarios is the com-
plicated process of obtaining the ground-truth data for a scene with non-uniform illumi-
nation. Capturing local changes in the scene illumination requires accurate and reliable
pixel-wise illuminant calculation. Therefore, so far, the majority of these datasets are only
focused on simpler scenarios and there is a need for large scale image datasets.

1.2 Objectives and approach

Above we have indicated three aspects of computer vision in complex scenes. In this
thesis, we aim to tackle these issues in order to advance our understanding of illuminant
and object reflectance modeling in complex real-world scenes.

1.2.1 Reflectance and illumination decomposition in complex scenes

While the previous works in this field were limited to rather simple scenes (e.g., laboratory
data) or used assumptions like Lambertian reflectance or a known illuminant, our goal is
to extend existing physics-based models to account for complex illumination, shapes, and
surface properties. Therefore, in Chapter 3, we attempt to solve the reflectance model with
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minimal assumptions and to form an accurate decomposition of the object reflectance in
an arbitrary uncalibrated image.

The key ingredient in our approach is the use of segmentation based reflectance and
illumination estimation. That is to extract pixels which belong to a single-colored surface,
but still present a complex distribution in the color space as their brightness is effected
by the surface geometry and specularities and their color is influenced by the different
chromaticities of the illuminants in the scene. Using this extra cue we are able to model
multi-illuminant scenarios which can also include inter-reflections and colored shadows.
Achieving a realistic decomposition enables us to perform highly realistic object recolor-
ing and physics based color transfer.

1.2.2 Color constancy in multi-illuminant scenes

Many Computer Vision applications use color properties as discriminative features to con-
duct fundamental tasks like object segmentation, classification, and other cues for scene
understanding. To this end, it is crucial to estimate the colors of objects in the scene in-
dependent of their illumination condition. Conventional methods often limit themselves
to simplifying assumptions over the illumination (e.g., uniform illumination). In real
world images, objects tend to exhibit more complex reflections due to shadows, high-
lights, and are furthermore affected by the characteristics and chromaticity of their il-
luminants. Therefore, a more general model of illumination and reflectance which can
handle multiple illuminants is required.

In Chapter 4 we propose to apply a local illuminant estimation method in order to
improve the estimations in the case of scenes illuminated by differently colored light
sources at the same time. We do so, by expressing the illuminant estimation problem as an
energy minimization which enables us to easily combine the state-of-the-art methods on
global illuminant estimation into a mathematically sound formulation. This also further
simplifies and improves the implementation and results. We propose to take advantage of
Conditional Random Fields to achieve global consistency of the illuminant estimations.
Finally, as a useful application of our framework, we demonstrate that using this local
modeling, we are able to develop a more intelligent automatic white balancing method.

1.2.3 Ground Truth data sets in complex scenes

Scene decomposition into its illuminant, shading, and reflectance intrinsic images is an
essential step for scene understanding. For the evaluation and comparison of algorithms
in the field, having an image dataset with reliable ground truth data is essential. However
collecting intrinsic image ground-truth data is a laborious task. And the assumptions on
which the existing ground-truth procedures are based limit their application to simple
scenes which are not always representative of the real world. In Chapter 5 we provide
details on data acquisition and ground truth computation.
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In the first part of this chapter, we focus on the data captured using digital cameras
from both real-world and laboratory scenes which present complex reflectance and illu-
mination conditions. The aim of this dataset is to provide images with accurate pixel-wise
illumination ground-truth for multi-illuminant scenes. The scenes include various exam-
ples of colored shadows and contain various types of surfaces and materials.

The second part, presents our synthetic image dataset constructed using graphical
but physically accurate 3D modeling and rendering software. We investigated synthetic
data for intrinsic image research since the extraction of ground truth is straightforward,
and it allows for scenes in more realistic situations (e.g, multiple illuminants and inter-
reflections). With this data set we aim to motivate researchers to further explore intrinsic
image decomposition in complex scenes. Moreover we compare the two different meth-
ods presented for constructing and collecting our datasets and investigate the advantages
and disadvantages of each method.
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Chapter 2

Research Context

The aim of this chapter is to present the general context and overall background of the
topics which are covered during the next chapters.

2.1 Reflectance Models

Object reflectance estimation from an image is an active subject in color-vision whose
application ranges from color constancy to image segmentation and object classification.
The main idea is: if we would be able to build a realistic model of the light interaction with
the object surface, we could extract crucial knowledge about the object surface geometry
as well as the illuminant light. Such knowledge would then be used in order to remove
the effect of a non-white illumination (color constancy), locate and remove the areas of
shadows and highlights (essential in object segmentation), and obtain the geometrical
model of the object (improving object classification).

2.1.1 Lambertian Reflection

One of the simplest and most commonly used models is the Lambertian reflectance. This
model is based on the simple assumption that the intensity of the light reflected from the
surface is independent of the viewing angle and the surface luminance is considered to
be isotropic. Some examples of Lambertian (matte) materials are chalk, soil and paper 1.
The reflected energy from the surface E is given by:

E(λ,x) = mb(x)b(λ,x)e(λ,x) , (2.1)

where b is the surface albedo, e(λ,x) is the illumination in the scene, λ is the wavelength
and x the spacial coordinates of the pixel in the scene. From here on we use bold face

1Here we ignore the translucency characteristic of many commonly used types of paper which is caused
by optical brightening for commercial reasons.

9
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to denote vectors. Often in the literature it is assumed that the spectral distribution of the
light source is spatially uniform across the scene and it does not depend on the position;
therefore the x notation can be omitted. Here mb is the geometric part of the reflectance
which depends on the α angle between the direction of the incident light and the surface
normal (mb = cos(α)).

Now the value measured by the camera with spectral sensitivity ρc(λ), c ∈ {R,G,B}
at position x is modeled as f c(x) by integrating over the visible spectrum ω,

f c(x) = mb(x)

∫
ω

b(λ,x)e(λ)ρc(λ)dλ , (2.2)

We define the body reflectance as

cb
c(x) =

∫
ω

b(λ,x)e(λ)ρc(λ)dλ . (2.3)

Therefore,
f(x) = mb(x)cb(x) , (2.4)

In spite of its inaccuracy for describing real-world scenes, still the majority of computer
vision methods are based on the Lambertian assumption.

2.1.2 Dichromatic Reflection Model (DRM)

A more realistic reflectance model is the dichromatic reflection model (DRM) proposed
by Shafer [88]. The model focusses on the color aspects of light reflection and has only
limited usage for geometry recovery of scenes. It separates reflectance into surface body
reflectance and interface reflectance. The model is valid for the class of inhomogeneous
materials, which covers a wide range of materials such as wood, paints, papers and plastics
(but excludes homogeneous materials such as metals). It predicts that values of a single
colored object lie on a parallelogram in color space, defined by the body reflectance and
the illuminant color.

For multiple light sources we assume that the combination can be approximated as a
single light source for the local feature.

f c (x) = mb (x)

∫
ω

b (λ,x) e (λ)ρc (λ) dλ+ms (x)

∫
ω

i (λ) e (λ)ρc (λ) dλ , (2.5)

where b is the surface albedo. We assume neutral interface reflection, meaning that the
Fresnel reflectance i is independent of λ. Accordingly, we will omit i in further equations.
The geometric dependence of the reflectance is described by the terms mb and ms which
depend on the viewing angle, light source direction and surface orientation. x denotes the
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spatial coordinates, and bold face is used to indicate vectors. In vector notation we can
now write:

f (x) = mb (x) cb (x) +ms (x) cs (x) . (2.6)

The reflection of the light consists of two parts: 1. a body reflection part mb (x) cb, which
describes the light which is reflected after interaction with the surface albedo, and 2. the
interface reflection ms (x) cs which describes the part of the light that is immediately
reflected at the surface, causing specularities.

Several methods have been developed to approximate the dichromatic model of an
object. Kravtchenko and Little [56] have introduced a spatial-based approach in their
segmentation method in which they approximate the two dichromatic planes for specular
and body reflectance considering the lighter and darker pixels separately. Shen and Xin
have solved the model with the assumption of a known illuminant [89].

The original application to which the DRM was applied, was the separation of shad-
ing from specularities [88]. The specularities, being dependent on scene incidental events
such as viewpoint and surface normal, could be removed to simplify color image under-
standing. The removal of specularities allowed for improved segmentation algorithms
[53, 71]. Furthermore, the estimation of the specularities also provides an illuminant es-
timation, thereby allowing for color constancy. A second application field which has
benefited from the DRM is photometric invariant feature computation [41, 97].

2.1.3 Multi-illuminant

In cases that the assumptions made by the original DRM are not met, more complex re-
flectance models are required. One such case is ambient light, i.e. light coming from all
directions. Ambient light occurs in outdoor scenes where next to the dominant illuminant,
i.e. the sun, there is diffuse light coming from the sky. Similarly, it occurs in indoor sit-
uations where diffuse light is caused by reflectances from walls and ceilings. Shafer [88]
models the diffuse light, a, by a third term

c (x) = mb (x) cb (x) +ms (x) cs (x) + a. (2.7)

Later work improved the modeling [70, 82] and showed that the ambient term results
in an object color dependent offset which could perform crucial in handling the case of
colored shadows. Furthermore, in [70] a photometric invariant with respect to ambient
light is proposed.

Another case is the presence of multiple illuminants in the scene (a more general-
ized case of ambient light). A typical example of a ”multi-illuminant” scenario is the
interreflections occurring between objects in complex scenes.

Figure 2.1 is a physics-based illustration of the case of an object observed under
multiple-illuminant. A main focus of this thesis in the next chapters is to present novel
approaches to model complex multi-illuminant scenarios in order to accurately estimate
and modify the illuminant chromaticity.
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Figure 2.1: Real-world objects often exhibit body and surface reflection under more than
just one illuminant (e.g., outdoor scene with blue sky and yellow sun).

2.1.4 Inverse-Intensity Chromaticity Space

Using the Dichromatic Reflection Model, Tan et al. [92] formulate the camera response
Ic(x) for each color filter c as:

Ic(x) = mb(x)Λc(x) +ms(x)Γc , (2.8)

where Λc(x) = Bc(x)/
∑

iBi(x) and Γc = Gc/
∑

iGi, i ∈ {R,G,B} are diffuse and
specular chromaticities respectively. Bc(x) and Gc are the respective camera responses
defined as below:

Bc(x) =

∫
ω

b (λ,x) e (λ)ρc (λ) dλ

Gc =

∫
ω

i (λ) e (λ)ρc (λ) dλ

Here we assume neutral interface reflection and that the color of the illumination over
the input image is uniform so that the spectral distribution of the illuminant becomes
independent of the image coordinate x.

The image chromaticity is similarly defined as σc(x) = Ic(x)/
∑

i Ii(x). Tan et al.
define the correlation between image chromaticity and illumination chromaticity as (we
will omit the spatial arguments):

σc = p
1∑
Ii

+ Γc , (2.9)
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(a) (b)

Figure 2.2: Here’s an illustration for the intensity chromaticity space: (a) Sketch of spec-
ular points of two surface colors in inverse-intensity chromaticity space; (b) Diffuse and
specular points of an image. Images are taken from Tan et al. [92].

where p = mb(Λc−Γc). This demonstrates that we are able to determine the chromaticity
of the illuminant, Γc, using p since the image chromaticity, σc, and total image intensity,∑
Ii can be obtained using the input image. Tan et al. finally conclude that in the Inverse-

Intensity Chromaticity (IIC) space (in which the chromaticity σc and inverse intensity∑
Ii are the vertical and horizontal axis respectively) the diffuse pixels form a horizontal

line and the specular pixels form a diagonal line which intersect the chromaticity axis at
the illuminant chroma (Γc). Figure 2.2 presents example of the IIC space.

2.2 Intrinsic Images

As mentioned in the previous section, human vision has the ability to perceive charac-
teristics intrinsic to the scene, such as color, size, shape, distance, orientation and etc.
In 1978 the term intrinsic images has been first coined by Barrow and Tenenbaum [10]
referring to a family of images each of which contains the value of one of the intrinsic
characteristic at each point corresponding to the input image and additionally the explicit
indications of boundaries due to discontinuity in value or gradient.

Using the idea that the main variations in an image sequence of a fairly static outdoor
scene should be the illumination changes, a method for object color decomposition has
been developed in which the object surface reflectance model has been extracted, assum-
ing the camera response to be linear [104]. The author has used the assumption that when
derivative filters are applied to natural images, the filter output tend to be sparse. Then a
maximum likelihood estimator has been used for surface reflectance recovery.

Recently an effort by Grosse et al. [49] to introduce a quantitative measure for bench-
marking and evaluating the different intrinsic estimation methods has resulted in the
widely used MIT dataset which has greatly encouraged more works on this topic (see
Figure 2.3). Since then many methods have been developed and tested using this dataset.
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Figure 2.3: Example of intrinsic image decomposition. From left to right: the original
image, reflectance image, and shading image. Images are taken from the MIT intrinsic
image data set [49].

Figure 2.4: This figure demonstrates the effect of color constancy on the perception of
colors. The first row is an example of such effect using two different surrounding colors.
Images on the second row show that the bluish tiles in the image on the top of the left
cube are identical to the yellowish tiles on the top of the cube in the right, and all are in
fact gray. Also the red tiles on the top of both cubes, even though appearing identical,
are in fact different colors as demonstrated in the third row. Figures are taken from Lotto
et al. [66].
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Gehler et al. [38] developed a novel approach for intrinsic image recovering on single im-
ages by assuming that the reflectance values are drawn from a sparse set of basis colors.
Using their probabilistic approach they managed to achieve quality results on the MIT
dataset, while they demonstrate that adding more cues such as edge information to their
model has led to state-of-the-art results. Another method which uses probabilistic models
for this task is the work of Serra et al. [87] who also show competitive results obtained
on the MIT dataset. In this work, ridges have been used as extra cues to improve the
results [101].

In chapter 5 we further approach this problem and introduce our own dataset for in-
trinsic image benchmarking.

2.3 Illumination Estimation and Color Constancy

Estimating the illuminant and reflectance are highly related. Having a good estimation
of the illuminant could result in much more accurate reflectance estimate and intrinsic
image decomposition. So far, there have been many methods presented in different fields
of computer vision and image processing which assume the illuminant to be white or
known. But in many cases the scene has more complex illumination. Here we start
with a brief introduction on perceptual color constancy in human vision followed with a
summary of computational color constancy methods.

2.3.1 Perceptual Color Constancy

A commonly accepted definition of perceptual constancy is the ”relative stability of the
apparent value of object properties (size, shape, orientation, movement, etc.) when the
representation at the eye (retinal image) is variant with changes in observer position,
posture, and movement.” [21]

Some examples of perceptual constancy in the literature are: size constancy when we
look at the object from far away or close up; lightness constancy when we do not see the
large differences in lightness even when objects are illuminated by intensities that dif-
fer in several orders of magnitude; shape constancy referring to objects being perceived
similar despite the distance and the viewing angle; identification of a musical instrument
as constant under changing timbre or conditions of changing pitch and loudness, in dif-
ferent environments and with different players; in speech the vowels or consonants are
perceived as constant categories even if acoustically, they vary greatly due to phonetic
environment, tempo, speaker’s age, gender, or dialect. One of the interesting forms of
perceptual constancy is color constancy which could play an important role in crucial
tasks such as finding and classifying the objects. Color of an object is a valuable cue in
determining whether a fruit is ripe or an animal is poisonous.

Ebner in his book “color constancy” [25] defines this phenomenon as the human ob-
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servers’ ability to recognize the color of an object irrespective of the light used to illumi-
nate them. He further explains that since a digital camera uses a sensor to measure the
light reflected from the object surface, this measurement at pixel level varies according
to the color of the illuminant. This could result in the color of the pixels being different
from the ones perceived by the human observer. Color constancy mechanism also exists
in various animals like honeybees, goldfishes, and monkeys (the last are believed to poses
the vision which is most similar to humans).

Regarding the reasons why color constancy could occur in human vision, there are
various studies in the literature. These studies converge in a number of possibilities. For
example Goldstein in ”sensation and perception” [47] points out that color perception
can be changed by chromatic adaptation. For example, prolonged exposure to red light,
bleaches the long-wavelength cone pigment in one’s eye which decreases the sensitivity
to red light and causes the perception of the red or reddish colors to be less saturated.
Digital cameras on the other hand use sensor with fixed responsivity to wavelength and
that causes the difference in between the measured pixel colors and the human perception
of the objects in the scene.

Also the existence of other colors in the surrounding enhances color constancy which
has been for many years an important cue to deal with the problem of computational color
constancy. This phenomenon is best noticed when the object is surrounded by objects
of many different colors. While many white balancing function in commercial cameras
work this way, it is possible to trick this system to mistake a color for another because
of its surrounding. Figure 2.4 demonstrates some illusions created using this matter in
the literature. Color memory is also another reason often considered while explaining the
color constancy phenomena.

2.3.2 Computational Color Constancy

Since in many applications which deal with photos and videos, consistency with the hu-
man perception is desired, achieving computational color constancy plays an important
role. From designing better photo filters and white balancing in the art of photography,
to fundamental applications in computer vision like object classification and image seg-
mentation, estimating and modeling the illuminant could serve as a crucial pre-processing
step in order to achieve good results.

Unlike perceptual color constancy, computational color constancy deals with the op-
tics and underlying physical laws regarding the light’s interaction with object surface
rather than the reasons for which a human subject would perceive a scene in a certain
way. That is to say, the main goal in the computational color constancy is to estimate the
chromaticity of the lights illuminating the scene and transforming the input image to the
canonical image (i.e., the image of the scene taken under a neutral or white light source)
by removing the effects of the illumination color.
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Color Correction

Using the color correction transform, the appearance of the colors in the image is changed
in order that they would appear as if being captured under a white light source. The
simplest and most commonly used transformation of this kind is the von Kries [103]
transform which independently scales each of the cone responses or RGB channels:

Rc

Gc

Bc

 =

dR 0 0
0 dG 0
0 0 dB

Re

Ge

Be

 , (2.10)

where di = ei√
3(e2R+e2G+e2B)

, i ∈ {R,G,B}. In spite of being merely an approximation

of illumination change, it is the commonly accepted model in the literature due to its
simplicity.

Since the von Kries model might not accurately be able to model photometric changes
due to disturbing effects such as highlights and interreflections, there are more accurate
models proposed for chromatic adaptation. For example, sharpening the cone responses
before transformation [18] or using and offset as in diagonal-offset model [31] (which
ideally becomes zero for von Kries model):

Rc

Gc

Bc

 =

dR 0 0
0 dG 0
0 0 dB

Ru

Gu

Bu

+

o1

o2

o3

 . (2.11)

Illuminant Estimation

The recovery of the illumination color from a single image is an under-constrained prob-
lem. Every observed image pixel represents an unknown combination of surface re-
flectance and illumination. Many color constancy algorithms try to make this problem
tractable by imposing different assumptions on the observed scene (e.g. a derivative of the
pixels sums up to 0 under canonical illumination as in gray edge algorithms [96] or that
the convex hull of the pixels in a suitably chosen color space encompasses most illumina-
tion changes as in gamut mapping [34]). Furthermore, most illuminant color estimators
typically assume globally uniform illumination. This prerequisite is essential for collect-
ing a sufficiently large number of samples from the whole image and thus increasing the
accuracy and robustness of the methodology.

Existing illuminant estimation methods are categorized in three main groups: static
and physics-based methods, gamut-based methods, and learning-based methods. The rest
of this section presents a brief description regarding each of these categories [44].
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2.3.3 Static Methods Using Low-level statistics

Here we discuss a set of illuminant estimation methods which rely on low level statistics
from the image pixels. These methods are categorized as static because they use fixed
parameter setting. Popularity of these methods is mainly due to the simplicity of their
implementation and their high speed. They could obtain accurate results if used with ade-
quate parameters, while their accuracy and quality of their results would drop otherwise.

The most popular and commonly used approach in this category relies on the gray-
world assumption, that is the average reflectance in a scene under neutral light is achro-
matic [17]. Or more accurately, the average reflectance in a scene is equal for every
wavelength. Various extensions have been proposed to improve this method, e.g. comput-
ing the scene average over image segments to reduce the effect of large uniformly colored
surfaces.

Similarly, white-patch [59] method assumes that the maximum response in the color
channels is caused by a perfect reflectance (reflecting the full range of light). In this
method, the perfect reflectance represents the color of the illuminant. Various works
in the literature demonstrate that smoothing the image before performing the illuminant
estimation could improve the results.

Using higher order statistics, the gray-edge method uses the average reflectance deriva-
tives in a scene to estimate the illuminant color [96]. The gray-edge hypothesis is based
on the observation that the distribution of the color derivatives in the image has a relatively
regular (ellipsoid) shape of which the long axis is in the direction of the light source.

Using the Minkowski norm [32], a generalized formula is introduced in the literature
which can incorporate all the above mentioned methods:

(∫ ∣∣∣∣∂n(f c)σ(x)

∂xn

∣∣∣∣mdx) 1
m

= k(ec)n,m,σ , (2.12)

where n is the differentiation power, and m is the Minkowski norm. σ denotes the stan-
dard deviation of a Gaussian smoothing operator that is applied to the image prior to the
differentiation. e stand for the the illuminant and k is a constant. Using the generalized
formula has the advantage that the choice of the method can be reduced down to the
choice of the parameters. Figure 2.5 shows examples of white-balance performed using
the illuminant estimate by different static methods and their relative errors.

The parameter n > 0 produces a higher-order color constancy method (e.g., n = 1
gray-edge and n = 2 second order gray-edge). Using a higher Minkowski norm will
emphasize larger measurements in the image, while lower values will equally distribute
weights among the measurements (e.g., m = 1 for gray-world and m = inf for Max-
RGB). Also in Chapter 4 this formulation is used in order to incorporate the static meth-
ods into a novel Conditional Random Field (CRF) framework for local color constancy.
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Figure 2.5: Examples of statistic based color constancy for two scenes from the SFU data
set [19]. Each row from left to right demonstrates: the original image and results using
gray-world, gray-edge, and second order gray-edge.

2.3.4 Physics-based Illuminant Estimation

Although many illuminant estimation method make the Lambertian assumption (Sec 2.1.1),
using the more accurate DRM formulation (Sec 2.1.2) there has been some advancements
in this field. By assuming the neutral interface reflection, various illuminant estimation
methods have been developed which extract the illuminant chromaticity from the specular
highlights in the image. Also the Planckian illuminant assumption has led to a physics-
based illuminant estimation method by Finlayson and Schaefer [27]. In Chapter 3 we
further discuss this matter.

As described in (Sec 2.1.4), the inverse intensity chromaticity space can be used in
order to extract the illuminant chromaticity as in the work by Tan et al. [92]. Although this
work has presented a very elegant formulation based on the original work by Shafer [88],
in practice the method relies on a specularity segmentation in order to identify the specular
pixels. In Chapter 4 we further extend their approach for the purpose of local illuminant
estimation.

2.3.5 Gamut-based Methods

A color gamut is a convex part of the color space which contains the complete set of colors
which can be accurately represented in a given circumstance. Gamut mapping methods
assume that only a limited set of colors can be observed under an specific given illuminant.
The gamut of the possible colors for a reference illuminant (often white) is referred to as
the canonical gamut. Canonical gamut is constructed using as many surfaces under the
refrence light as possible.

There are many different gamut mapping illuminant estimation methods in the litera-
ture, all of which consist of the following steps: first the canonical gamut is formed using
the training images; then the input image is used to construct a gamut that is considered
a subset of the gamut of the illuminant to be estimated (that is because the input image
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only includes a very small subset of possible colors in its gamut); in the next step, the
feasible set of mappings which applied to the input gamut result in a gamut that is com-
pletely within the canonical gamut is computed; using an estimator one mapping that best
maps the unknown illuminant to the canonical gamut is chosen; finally the chosen map-
ping is applied on the input image to obtain the image of the scene under the canonical
illluminant.

Existing gamut mapping methods, although being based on the original work pio-
neered by Forsyth [34], differ from each other in their approach to each of the steps men-
tioned above. Several extensions of gamut mapping are aimed to simplify, improve or
reduce the costs of the implementation and execution of this algorithm like using convex
programing [33] or using a simple cube instead of the full convex hull of the pixel values
as gamut [73]. Alternatively, 2D chroma space is used instead of the original 3D color
space to reduce the complexity of the implementation and visualization of the problem.
However this conversion is known to slightly decrease the performance of the method that
is caused by the perspective distortion. Therefore, to solve this problem, the 2D feasible
set is mapped to 3D again before choosing the best mapping.

Some approaches deal with the dependency of gamut mapping on the diagonal model
for chromatic adoption since a null solution could occur if the diagonal model fails [4,6].
Other approaches tried to address this problem by enlarging the input or the canonical
gamut using different heuristics [3, 28] . Others used extensions like gamut-constrained
illuminant estimation by limiting the possible set of illuminants in which one canoni-
cal gamut is learned for every possible illuminant and then the unknown illuminant is
estimated by matching each of these gamuts to the gamut of the input image, or diagonal-
offset which allows for translation of input colors along with the linear transformation
used in original method. Alternatively there are many approaches which combine these
algorithms or exploit derivatives to better estimate the illuminant [43].

Overall, gamut mapping has a very good potential for achieving high accuracy while
being based on an elegant underlying theory. However, it is quite complex for implemen-
tation and requires a large amount of training data and adequate preprocessing. Figure 2.6
shows an example of color constancy using gamut mapping.

2.3.6 Learning-based Methods

In this section we make a brief review of the illuminant estimation methods which learn
their model using training data.

Color-by-correlation: In this approach a correlation matrix is created for every possi-
ble illuminant to be considered. The correlation matrix for a known light li is computed
by partitioning the color space into a finite number of cells and computing the probability
of occurrence of each coordinate under that light. Then the information from the input
image is matched to the information from the correlation matrices and the probability of
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Figure 2.6: An example of a scene from [6] and its gamut (middle). On the right is the
image after gamut mapping has been applied.

face 

air 

grass 

Figure 2.7: Example of top-down color constancy [98]. Based on the correct identification
of the face and grass in this scene the algorithm succeeded in estimating the illuminant
color.

each light being the match is calculated. This probability defines the likelihood of the
image being taken under that light. Using this approach, Finlayson et al. [30] then pro-
ceed to choose the light using the maximum likelihood as the final estimate. Note that
although this technique has some similarities with the gamut mapping technique, it is a
more general framework which also includes low-level statistics-based methods such as
gray-world and white-patch.

Bayesian color constancy: These approaches model the variability of reflectance and
light sources as random variables. The illuminant is then estimated from the posterior dis-
tribution conditioned on the image intensity data [16]. Using the assumption that nearby
pixels are correlated, Rosenberg et al. [84] replaced the Gaussian distribution assump-
tion with nonparametric models. Further, Gehler et al. [37] were able to achieve high
performance using their color constancy dataset proving that the Bayesian approach can
strongly benefit from using precise priors for illumination and reflectance.

Natural image statistics: To improve the illuminant estimation results and in order to
choose the correct color constancy method, various method have been proposed. Gijsenij
and Gevers [42] used the fact that each method makes assumptions on the color distribu-
tion in the input image (e.g., average color or edge is achromatic under neutral light) to
combine several color constancy approaches. They argue that natural image statistics can
be used in order to describe these distributions in an image. They state that this fusion
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improves the performance over individual methods.

High level cues: Using prior knowledge about the world, van de Weijer et al. [98] pro-
posed to select the best illuminant among a set of illuminant hypothesis. In this sense,
possible illuminants are considered based on the likelihood of their semantic content in
order to generate the most plausible scene. Images are modeled as a mixture of seman-
tic classes (e.g., water, grass, or sky) using a distribution over visual words which con-
tain 3 cues namely: color, texture, and position (described using Gaussian RGB average,
SIFT [67], and regular grid respectively). The light source which leads to the most likely
scene (i.e. the one in which the grass is green and the sky blue) is selected among the
candidate light sources (see Figure 2.7). A more specific high-level information source is
used by Bianco and Schettini [13], who use the color of skin tones (predominantly faces)
to estimate the illuminant in a scene. Finally, Vazquez et al. [102] show that color cate-
gories can also be applied as a top-down mechanism to improve illuminant estimation.

In Chapter 4 we explain how we use Conditional Random Field (CRF) to combine
bottom-up color constancy approaches in order to tackle the problem of illuminant esti-
mation in complex multi-illuminant scenes.

2.3.7 Local Illuminant Estimation for non-uniform illumination

Most color constancy methods assume the illumination to be uniform, while in real-world
there are many cases of multi-illuminant scenes for which this assumption results in dras-
tic artifacts. A common example of a multi-illuminant scene is a fine sunny day that
is illuminated by both the yellow sun, and blue sky. In this case different points of the
scene are illuminated by different mixture of these colors. Also another example of multi-
illuminant scene is the presents of interreflections and colored shadows.

Ebner et al. [24] proposed a method for solving the case of non-uniform illumination
by computing the local average color in the image. Recently Bleier et al. [14] have tried to
examine the accuracy of a number of existing statistical illumination estimation methods
on the images with non-uniform illumination. To this end they first divided the image
to sub-regions, superpixels, and then applied each of the methods separately on each
superpixel. Also using a similar approach Riess et al. [81] have extended the [92] to
obtain an estimate for local illumination. The work published by Gijsenij et al. [46]
presents a framework and a dataset to address the multi-illuminant scenes. In Chapter 4
a novel approach and a dataset for illuminant estimation in multi-illuminant scenes using
Conditional Random Field (CRF) is presented.
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2.4 Conclusion

In this chapter, we have presented an overview of the different topics addressed in this
thesis and briefly discussed some of the main studies and methods in the literature regard-
ing them. Firstly, we explained object reflectance modeling and reviewed various existing
models. Then we described the concept of intrinsic images followed by a summery of
methods for image decomposition into its intrinsic components. Lastly, we reviewed the
color constancy phenomenon in human vision and the main computational approaches for
illuminant estimation. In each section, we pointed out the strengths and shortcomings of
the state-of-the-art approaches. In the next chapters, we will focus on the possibilities for
improvement in each of these aspects.
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Chapter 3

Object Recoloring based on Intrinsic
Image Estimation1

Object recoloring is one of the most popular photo-editing tasks. The problem of object
recoloring is highly under-constrained, and existing recoloring methods limit their appli-
cation to objects lit by a white illuminant. Application of these methods to real-world
scenes lit by colored illuminants, multiple illuminants, or inter-reflections, results in unre-
alistic recoloring of objects.
In this chapter, we focus on the recoloring of single-colored objects presegmented from
their background. The single-color constraint allows us to fit a more comprehensive phys-
ical model to the object. We show that this permits us to perform realistic recoloring of
objects lit by colored lights, and multiple illuminants. Moreover, the model allows for
more realistic scene relighting. Recoloring results on images captured by uncalibrated
cameras demonstrate that the proposed framework obtains realistic recoloring for com-
plex natural images. Furthermore we use the model to transfer color between objects and
show that the results are more realistic than existing color transfer methods.

3.1 Introduction

Recoloring refers to the modification and adjustment of color appearance in images. Ob-
ject recoloring methods are used in photo montage, image color correction, visual effects
in movies, and also to facilitate the industrial design by visualizing the final color ap-
pearance of the object before production. In the current work, we focus on recoloring
of single-colored objects in images of medium quality as typically encountered on the
Internet.

1This chapter has appeared in ICCV 2011 [11].

25
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Figure 3.1: The first row is an example of the reflectance decomposition achieved by
DRM [88]. Using this decomposition, object recoloring is performed by changing the
body reflectance (the second row), and illuminant recoloring is achieved by changing the
specular reflectance (the third row).

One of the most popular color modification applications is the recoloring of a specific
object with another color or under different lighting condition (e.g., warm-tone sunset or
cold-tone early morning). In many circumstances, it may not be possible to create the
object in the desired color or to simulate the desired lighting condition. Another case is
when an impossible scenario is desired, for example a blue apple, and here the choices
are to either render a 3D model of the scene or to simply photograph the object and then
recolor it. Recoloring should result in physically plausible scenes and should require
minimum user interaction.

Here our main objective is to develop a physics-based method to extract the underlying
reflectance model of the object and separate the geometric characteristics from the colors
of the object and the illuminant. Such physics-based model can then be used in order to
generate an image of the object in the same lighting and viewing angles, varying only the
object and/or illuminant colors. Fig 3.1 provides an example of reflectance decomposition
as well as object and illuminant recoloring.

Images describing the underlying physical properties of the scene such as reflectance,
orientation, and illumination are known as intrinsic images and were first introduced by
Barrow and Tenenbaum [10]. Intrinsic images are more appropriate for higher-level scene
analysis than the original light intensity images, because they are less prone to scene acci-
dental events such as illuminant direction and color changes. The Dichromatic Reflection
Model(DRM) [88] models the object reflectance using two chromatic coefficients: body
reflectance cb, and specular reflectance cs:

f(x) = mb(x)cb +ms(x)cs, (3.1)

where, for each pixel x, mb and ms are the intrinsic images describing the interaction
between the light and the surface as a function of geometric parameters such as incident
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angle, viewing angle, and surface normal.

In this chapter, we investigate the application of the single-colored object constraint to
derive the intrinsic images of a scene. We assume a segmented mask of a single-colored
object to be given as an input. A user working in a photo-editing environment has mul-
tiple segmentation tools to quickly segment objects [62, 85]. This single-colored object
constraint greatly simplifies the estimation of intrinsic images. We show that this con-
straint allows us to further extend the DRM to model more complex scenes with multiple
illuminants which proves crucial for outdoor scenes where two illuminants (e.g, the sun
and a blue skylight) illuminate the object.

We propose a Multi-illuminant Dichromatic Reflection model (MIDR), and provide
an algorithm for solving the case of two illuminants. This algorithm is then embedded in a
framework which is capable of recoloring complex objects in the presence of shadows and
specularities formed by two unknown illuminants (e.g, colored-shadows and interreflec-
tions) and achieving physically plausible results for uncalibrated natural scene images.
As an additional application we show that our framework applied to color transfer, han-
dles complex objects with specularity and under multiple illuminant better than existing
methods.

3.2 Related work

Intrinsic images. Several methods have been proposed to compute the intrinsic images
of Eq. 3.1 based on various constraints. A common constraint is to assume Lambertian
reflectance (ms = 0). For this case, Weiss [104] shows that for an image sequence as-
suming cb to be constant over time, and using the prior that illumination images give rise
to sparse filter outputs, estimation of the intrinsic images is achievable. Tappen et al. [93]
show that by assuming that shading and reflectance boundaries do not occur at the same
location the intrinsic images can be derived from a single image.

Fewer works have concentrated on solving the case where ms 6= 0. Klinker et al. [53]
propose a method where segmentation and intrinsic image estimation are iteratively alter-
nated. Within each segment a single DRM is estimated. Hypotheses of possible illuminant
and object colors are verified for the segments and neighboring segments. This method is
further extended to include multicolored objects in [71, 72]. The main drawback of these
approaches is that they face a chicken-and-egg problem: for a good segmentation you
need approximately correct DRM parameters, and vice versa. Furthermore, these meth-
ods are only evaluated on high-quality images taken in controlled environments, typically
without complex backgrounds, which greatly enlarges the hypothesis space to be checked,
and limits the probability of correct convergence.

Several highlight/specularity removal methods have been proposed using the assump-
tion of a known illuminant cs and that the specular pixels have the same diffuse value as
their neighboring diffuse pixels. For example, Robbie Tan et al. [91] proposed an itera-
tive method for reflectance decomposition of textured surfaces. Tan at al. [90] improve
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the previous methods by adding spacial distribution and texture constraints when avail-
able. Mallick et al. [68] use partial differential equation that iteratively erodes the specular
component at each pixel.

Object recoloring. Many colorization methods have also been used for recoloring. They
mainly consist of partial hand-coloring of regions in an image or video and propagating
the colored points (known as color markers or hot-spots) to the rest of the image using
an optimization algorithm [23, 55]. Since these algorithms are based on the luminance
image they lack the additional color information which allows to separate the Lambertian
reflectance and specular reflectance, causing them to fail in the presence of specularities.

Color transfer methods extract the color characteristics from a source image and ap-
ply it to a target image. Many color transfer methods are based on pixels color distribu-
tion [78,80]. Local color transfer [36,105] and user-interactive methods [2] try to improve
the results by providing more cues. The main issue of the color transfer is that it requires
a target scene, while here we solve the case for which no information about the target
distribution is given. Furthermore, these methods are generally applied to matte surfaces
and do not consider the presence of specularities.

The recoloring embedded in professional photo-editing applications performs by cal-
culating an offset in the hue and saturation between the source and target colors. The
source image is adjusted to produce the desired color [48]. This method is fast and capable
of producing realistic results. However, as it ignores the underlying physical reflectance,
it fails in the case of colored or multiple illuminants.

Omer et al. [74] present an image specific color representation robust to color distor-
tion and demonstrated a recoloring example for a Lambertian surface. A more physics-
based approach, the closest method to our own, is a DRM based color transfer method [89]
in which the object (body) color is estimated and transfered between images. Realistic
results on lab conditioned high quality images of objects under single known illuminant
are presented.

Hsu et al. [50] proposed a novel method to estimate the light mixture in a single image
illuminated by two lights specified by user while the reflectance is modeled as solely
diffuse. The method achieves good results on white balance and light color change.

3.3 Object Reflectance Modeling

In this section, we describe a physics-based reflectance model for object pixels to achieve
a high quality recolored image. We begin with an overview of the DRM and then we
extend it for the Multi-illuminant case.
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3.3.1 Dichromatic Reflection Model (DRM)

According to Shafer, pixel values for a set of points on a single colored surface must lie
within a parallelogram in the RGB space, bounded by body reflectance cb and the specular
reflectance cs [88]. Validity of the DRM has been proven for a variety of inhomogeneous
dielectric materials commonly observed in natural scenes [94]. In this chapter, we assume
that color changes can be modelled by a diagonal model, or Von Kries model, which has
been proven a sufficient approximation [29]. We indicate the illuminant color by l, and
L = diag(l) is its diagonal matrix representation. In this case the DRM can be written as

f = mbcb +mscs = mbcL +msl, (3.2)

where f is the RGB triple defining the color of every pixel in the object surface, mb and
ms are the intrinsic images denoting the magnitude of the body and specular reflectance
respectively (Fig 3.1). The body reflectance is a multiplication of the material reflectance
c and the illuminant according to cb = cL. We assume neutral interface reflectance,
causing the specular reflectance to have the same chromaticity as the illuminant color
cs = l. This equation can be divided into intrinsic images and the chromaticity of the
object and illuminant in matrix notation according to

f = [mb(x) ms(x)] [L c l]T = M CT, (3.3)

where x is a vector of n×2 coordinates, f is the n×3 matrix of pixels RGB values, and the
intrinsic image matrix M = [mb(x),ms(x)] is n × 2 matrix containing intrinsic images.
The color characteristics matrix C = [L c l] contains the relevant parameters for scene
recoloring. In Section 3.4 we propose methods to estimate the model parameters.

3.3.2 Multi-illuminant Dichromatic Reflection (MIDR) model

Real-world objects often exhibit body and surface reflection under more than just one il-
luminant. An example of multi-illuminant scenario is an outdoor scene with blue sky and
yellow sun, or a scene with indoor lighting combined with outdoor lighting through a win-
dow. Conventional methods often ignore the secondary illuminants present in the scene
to simplify the modelling. Here we extend the reflectance model to the Multi-illuminant
Dichromatic Reflection model (MIDR) to account for the secondary illuminants. The
MIDR for n illuminants is given by

f = [M1...Mn]
[
C1....Cn

]T
= MCT, (3.4)

where Mn contains the intrinsic images regarding the nth illuminant and Cn is the corre-
sponding color charactristics matrix. Note that the material reflectance c remains constant
for all intrinsic color matrices. Due to the high complexity of the model, in Section 3.5
we solve for a simplified case of the MIDR model.

The dichromatic reflection model has also been extended to include ambient lighting.
Originally Shafer [88] modelled ambient light as a constant offset over the scene. Later
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work improved the modelling [70] and showed that the ambient term results in an object
color dependent offset. For the matter of simplification, in this work we assume the
ambient illuminant to be negligible.

3.4 Dichromatic Reflection Model estimation

Since the introduction of the DRM, multiple approaches to solve this model have been
proposed [53, 68, 72, 91]. In this chapter, we are interested in solving the DRM for the
application of recoloring single colored objects. Users interested in object recoloring
work within a photo-editing environment, allowing them to quickly segment the object of
interest. This single-colored object constraint allows us to fit a more realistic illumination
model, allowing the object to be lit by multiple illuminants.

A successful object recoloring algorithm has to face several challenges:

• Uncalibrated images: Photo-editing software users typically work with uncalibrated,
compressed images of medium quality and unknown settings. Most previous meth-
ods experiment on high quality calibrated images taken in lab conditions [53, 72],
and known illumination [68,91]. To handle these lower quality images we propose
a robust estimator(Section3.4.1).

• Complex color distribution: several existing approaches estimate the illuminant by
fitting L and T-shapes to the color distribution [53, 72]. These methods are based
on the hidden assumption that the mb is assumed constant while ms is changing.
In real-world images we often face much more complex distribution which rather
form a plane.To tackle this problem we use the illuminant estimation described in
Section 3.4.2.

• Complex lighting conditions: the objects in real-world images are often lit by mul-
tiple illuminants, colored shadows, and interreflections. Ignoring these lighting
conditions would make the resulting object recoloring look artificial. Therefore, in
Section 3.5, we propose an iterative algorithm to solve for two illuminants.

3.4.1 Robust Body Reflectance Estimation (RBRE).

For the task of body reflectance color (cb) estimation on medium quality images we pro-
pose the Robust Body Reflectance Estimation (RBRE). Since object pixel values of the
non-specular part (ms = 0) form a line passing through the origin, fitting a line through
these pixels allows us to compute cb = cL. The fitting error of an object pixel x to a line
given by the normalized vector ĉb is

e (x) =
∥∥∥f (x)−

(
(f (x))T ĉb

)
ĉb

∥∥∥ . (3.5)
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Although the least squares (LS) orientation estimation would perform well in the case
that all pixels belong to the same orientation, in our case in which there are two main
orientations (cb and l), the LS estimation will mix the two orientations and give a wrong
result. In order to avoid that, a robust estimator [99] is constructed:

e =

∫
Ω

ρ(e(x))dx. (3.6)

In the current work we apply the Gaussian error norm:

ρm(e) = 1− exp

(
− e2

2m2

)
. (3.7)

In a robust estimator, large deviations from the model are considered as outliers, and
therefore, they are not taken into account very heavily. While LS estimation is very
sensitive to outliers. In our application large deviations from the model are mainly due
to the mixing of two different directions, cL and l. The error, Equation 3.6, can now be
rewritten as (we will omit the spatial arguments):

e =

∫
Ω

ρm
(√

fTf − ĉT
b (ffT)ĉb

)
dx. (3.8)

A Lagrange multiplier is then used for minimization subject to the constraint ĉb
Tĉb = 1,

d

dĉb

(
λ
(
1− ĉb

Tĉb

)
+ e
)

= 0. (3.9)

Using Equation 3.7 as the error function leads to

η(ĉb)ĉb = λĉb, (3.10)

where η is defined according to

η(ĉb) =

∫
Ω

ffTGm

(√
fTf − ĉb

T(ffT)ĉb

)
dx, (3.11)

and Gm stands for the Gaussian function at scale m.

The main difference with the ordinary LS estimator is that here the matrix η is depen-
dent on ĉb. Eq 3.10 can be solved by a fixed point iteration scheme. We start iteration
with the initial estimate ĉb

0 given by the LS. Let ĉb
i be the orientation vector estimate

after i iterations. The estimate is updated as the eigenvector ĉb
i+1 of the matrix η(ĉb

i)
corresponding to the largest eigenvalue, i.e. we solve

η(ĉb
i)ĉb

i+1 = λĉb
i+1. (3.12)

Again, points far away from the line direction ĉb are considered outliers, and therefore,
do not corrupt the estimation. Iterative application of Equation 3.12 yields the estimate
of the body reflection, ĉb. The original estimation made by ordinary LS is refined at
each iteration by changing the weights leading the method to converge to a robust, and in
this case a much better, estimation of the ĉb. Figure 3.2 visualizes this algorithm on an
example data.
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Figure 3.2: Visualization of RBRE algorithm on an example data (the red car in Fig-
ure 3.4-(a) ). Object pixels of the non-specular (ms = 0) form a line (cb = Lc) passing
origin. A least square estimation (the black arrow) will mix the two main directions in
data. In a Gaussian error norm large derivations from the model are considered outliers
and are not taken heavily into account. Therefore using Gaussian error norm we iteratively
converge to the cb direction (the thick red arrow)

Figure 3.3: An example of intrinsic images recovered for an object. (a) Original im-
age; Intrinsic images: (b) Body reflectance and (C) Specular reflectance; (d) An example
recoloring result.

3.4.2 Confined illuminants estimation (CIE)

Having the body reflectance color, there exists a set of possible illuminants which could
generate the color distribution of the object. Many of these illuminants are unrealistic. It is
shown that the chromaticity of common light sources closely follows the Planckian locus
of black-body radiators [27]. We propose to use this constraint to estimate the illuminant.

We sample Planckian colors (T ⊂ 1000K ∼ 40000K) which vary from orange to
yellow to white to blue, resulting in a set of illuminants {l1, ..., lm}.We define the recon-
struction error of the intrinsic images M and intrinsic color characteristics C by

Er (f ,M,C) =
(
f −MCT

)T (
f −MCT

)
. (3.13)

Then, we perform an exhaustive search to find the best matching Planckian light. In other
words, we solve Equation 3.14 by choosing the Planckian light, which minimizes the
reconstruction error.

l̂ = arg min
l∈{l1,...,lm}

Er (f ,M, [cL l]) . (3.14)

In the next section we will outline the computation of the intrinsic images M given C,
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which are needed for the computation of the reconstruction error.

3.4.3 Intrinsic images

The estimation of the intrinsic images, given an estimation of Ĉ, is based on the convex
optimization problem:

minimize
M

Er

(
f ,M, Ĉ

)
subject to mb (x) ≥ 0,ms (x) ≥ 0.

(3.15)

Fig 3.3 demonstrates an example of intrinsic images recovered for an object. Note that
the specular reflectance is correctly separated from the body reflectance.

Algorithm 1 Two-illuminant MIDR model estimation
1: Consider the whole object segment as Mask
2: Estimate cb using RBRE for the pixels x ∈Mask
3: Estimate the Planckian illuminant l1 using CIE method
4: c← diag

(
cb L1

−1
)

5: IniciateMask to only include the pixels x for whichEr(f(x),M1,C1) < Threshold
6: repeat
7: Estimate c1

b using RBRE for the pixels x ∈Mask
8: Estimate the Planckian illuminant l1 using CIE method
9: c← diag

(
c1

b L1
−1
)

10: Estimate c2
b using RBRE for the object pixels f(x) /∈Mask

11: L2 ← diag(c2
b)/diag(c) (using the c from Step 9).

12: Update Mask to only include the pixels x for which Er(f(x),M1,C1) <
Er(f(x),M2,C2)

13: until L1 and L2 estimates converge
14: Recalculate the mb

1 and mb
2 using the previous estimates for c, l1, l2 and ms

1.

3.5 Two-illuminant MIDR model estimation

Many real-world objects are lit by multiple illuminants. Here we propose an algorithm to
estimate the case of two illuminants. Since the problem is highly underconstraint, we need
further assumptions: firstly, we assume one illuminant to be Planckian and demonstrate
specularities; secondly, specularities of the secondary illuminant to be negligible. We use
this as an additional constraint (m2

s(x) = 0). Note that we make no assumption on the
chromaticity of the secondary illuminant. Hence the model is given by

f = m1
bc L1 +m1

sl
1 +m2

bc L2. (3.16)

An iterative algorithm to solve this MIDR model is given in Algorithm 1. First we will
assume pixels to be illuminated by only one of the two illuminants m1

b(x)m2
b(x) = 0 and
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Figure 3.4: An example of the MIDR algorithm performance: (a) Original image; (b)
Object mask as the initial Mask for the illuminant l1; (c) The Mask after 1st iteration; (d)
The Mask at 3rd (final) iteration; (e) estimated m1

b ; (f) estimated m2
b (the interreflection

area,l2, has been correctly detected); (g) estimated m1
s; (h) An example recoloring (the

interreflection is preserved).

m1
s(x)m2

b(x) = 0. In the final Step we remove this restriction to allow for pixels being
lit by both illuminants at the same time. Here, we also use the diag-function to convert
vectors to diagonal matrices and vice versa. First an initial estimation is made based
on all pixels on the object (Steps 1-4) which gives us the initial values for the dominant
illuminant and object color. Based on this model pixels which could be described by
this model with affordable error are separated from the rest (Step 5) which are indicated
by the Mask. At each iteration the estimations and seperation mask are refined. We
estimate a Lambertian reflectance model for the pixels outside the Mask (Steps 10 and
11). Iteratively the illuminant color estimations are refined until convergence (Step 13).
The final model estimation is then given by the object material reflectance color c, the
two illuminant colors l1 and l2, and the corresponding intrinsic images m1

b , m
2
b , and ms.

Although the algorithm gives good estimates for c, l1 and l2, the constraint that pixels
can only be illuminated by a single illuminant results in artificial edges in the m1

b and m2
b

estimates. In reality there are regions where both lights illuminate the object. To solve
this, Step 14 finalizes the algorithm by keeping c, l1 and l2 and m1

s constant in Eq 7.1, and
estimates m1

b and m2
b constraining them to be positive.

In Fig 3.4 we show the results of the algorithm on an outdoor car image. The car
is illuminated by a white outside lighting as well as a greenish light caused by the light
coming from the grass field. The mask is given for several iterations of the algorithm.
The algorithm correctly separates the two illuminants. In the last row the intrinsic images
show the estimates of the body and specular reflection.

3.6 Experimental results

In the experimental section we analyze our proposed algorithm for MIDR estimation on
synthetic images. Additionally we show some results on challenging real-world images.
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Here we assume images are in sRGB format; and do gamma correction. Further applica-
tions of the model are discussed in the end of the section.

Figure 3.5: The first four images are examples of the synthetic images. The last three
images are the m1

b , m
2
b ,and m1

s ground truth.

Figure 3.6: Effect of noise and JPEG compression: (a) and (c) examples of applying
noise by sigma 4.0 and 9.0; (b) and (d) their corresponding reconstructions; (e) and (g)
examples of applying JPEG compressions of 20% and 80%; (f) and (h) their corresponding
reconstructions.

Figure 3.7: Median angular error (in radian) as a function of: Gaussian noise sigma (left)
and JPEG compression (right) for cb, l1 and l2 estimates.
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3.6.1 Synthetic Images

Here we test our algorithm on synthetic images which satisfy the assumptions, namely
they are lit by two lights, one of which is Planckian. The groundtruth intrinsic imagesm1

b ,
m2
b and m1

s are given (Fig 3.5). With these we generate a set of 60 test images by varying
the illuminants and the object color. Some examples are given in Fig 3.5. The soundness
of our algorithm has been verified on synthetic test images on which the intrinsic image
estimation performs with an error close to zero even though a large part of the object is lit
by both lights simultaneously.

Since we want to apply our method to standard Internet images, we further investi-
gated its robustness to both Gaussian noise and JPEG compression (Fig 3.7). The com-
parison is made using the Angular Error (Ea) in radians between the ground-truth (ĉgt)
and estimated (ĉest) colors as defined below,

Ea = arccos(ĉgt · ĉest). (3.17)

As can be seen the algorithm is sensitive to Gaussian noise but relatively robust to
JPEG compression (angular error of all estimations for 60% compression is under 0.07
radian). To better interpret the results in the graphs we also provide the reconstruction
results on one synthetic object for several noise and JPEG compression settings in Fig 3.6.

3.6.2 Real-world Images

Fig 3.9 compares MIDR-based recoloring with the one done by hue-saturation shift method.
The secondary illuminant (greenish interreflection) is correctly preserved by MIDR while
wrongfully changed to blue by the professional photo-editor. In Fig 3.10 the MIDR and
DRM has been compared for the accuracy of their recoloring results. The secondary illu-
minant (bluish shadow) is well preserved by MIDR while lost in the case of DRM. Note
that here we only modeled two illuminants and therefore the third illuminant (the small
brownish interreflection on the back of the car) is lost.

Note that theoretically the method fails to correctly make the intrinsic image decom-
position in the case object and illuminant colors are collinear. Also having no Planckian
illuminant confuses the CIE estimator. The latter is shown in the example of Fig 3.8.

3.6.3 Other Applications of MIDR

Here we show two other interesting applications for the proposed framework, namely
Physics-based Color Transfer and Photo Fusion.

Physics-based Color Transfer. A popular photo-editing task is transferring the color
characteristics of an image to another. Even though color transfer methods are often
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Figure 3.8: An example failure case: Here the Planckian light assumption is violated by
having a purple light. Since purple is not Planckian, the method wrongfully picked white
as the illuminant and purple as the object color. The recoloring shows that even though
the object itself looks realistic it does not match the scene illumination.

Figure 3.9: Comparing the MIDR method performance with a professional photo-editor:
(a) Original image (containing complex interreflection); (b) Recoloring result by MIDR
(the secondary illuminant,green interreflection, has been preserved); (c) Recoloring result
using the hue-saturation shift method (the green interreflection is wrongfully changed to
blue).

Figure 3.10: Comparing the methods based on MIDR and DRM: (a) Original image;
(b) Recoloring result by MIDR (zoomed area: blue shadows have been preserved); (c)
Recoloring result using DRM (missed the colored-shadows).

successful in transferring the atmosphere of one image onto the other, they make un-
realistic assumptions (e.g, Gaussian distribution, Lambertian objects). These shortcom-
ings become apparent when applied to the object color transfer. Fig 3.11 compares the
physics-based color transfer performed using MIDR and DRM models with the methods
from [78, 80]. We apply the color transfer only to the presegmented objects. After infer-
ring the object color and two illuminants, MIDR successfully transfers the object color.
Note that the methods of [78, 80] mixing the illuminants and object colors resulted in un-
realistic images. Furthermore, the resulting objects exhibit different colors than the target
objects.

Photo Fusion. Fig 3.12 is an interesting example made possible by our method. The car
in Fig 3.4 is copied into another scene. Here the object is recolored using the estimated
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Figure 3.11: Comparing the Color Transfer results by DRM, and [78, 80]. (a) and (f)
Original images;(b) and (g) MIDR results; (c) and (h) DRM results; (d) and (i) results
by [80]; (e) and (j) results by [78] . Note that the secondary illuminants (interreflections)
on the side of the car and the plane wing are lost in (c) and (h), wrongfully transformed in
(d), (e),(i), and (j), while being preserved in (b) and (g).

Figure 3.12: An example of photo montage: The interreflection of the green grass
(zoomed area) in the original image is re-lighted by the red color of the carpet to match
the target scene.

intrinsic images. But to match the target scene, the interreflection caused by the grass
is re-illuminated using the color of the carpet simply by changing the second illuminant
color to the red of the carpet resulting in a more realistic scene where the red carpet is
reflected in the side of the car.

3.7 Conclusion and future work

We have presented a method for recoloring single-colored objects based on intrinsic image
estimation. The single-color constraint allows us to fit more complex reflectance models
which better describe real-world images. Whereas most existing recoloring methods as-
sume a white illuminant, we presented a method to recolor objects taken under colored
illuminants, and the more complex case of multiple illuminants. Results on synthetic
images demonstrate that our algorithm correctly estimates the intrinsic parameters of the
scenes. Further we show that the proposed method is able to achieve physically realis-
tic recoloring results in challenging real-world images. In addition we present how our
method improves other photo-editing applications like Color Transfer and Photo Fusion.
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As future research, we will investigate further extensions of the dichromatic reflection
model, such as the bi-illuminant reflection model recently proposed by Maxwell [70].
This model allows for the modeling of ambient light which we believe could improve the
quality of the recoloring for the low luminance regions of the image.
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Chapter 4

Multi-Illuminant Estimation with
Conditional Random Fields 1

Most existing color constancy algorithms assume uniform illumination. However, in real-
world scenes, this is not often the case. Thus, we propose a novel framework for estimating
the colors of multiple illuminants and their spatial distribution in the scene. We formulate
this problem as an energy minimization task within a Conditional Random Field over a
grid of local illuminant estimates. To quantitatively evaluate the proposed method, we cre-
ated a novel dataset of two-dominant-illuminants images comprised of laboratory, indoor
and outdoor scenes. Unlike prior work, our database includes accurate pixelwise ground
truth illuminant information. The performance of the method is evaluated on multiple
datasets. Experimental results show that our framework clearly outperforms single illumi-
nant estimators, as well as a recently proposed multi-illuminant estimation approach.

4.1 Introduction

The vast majority of existing color constancy algorithms are based on the assumption that
there exists a single illuminant in the scene. Many images, however, exhibit a mixture
of illuminants with distinct chromaticities. Consider for example indoor scenes which
are lit by both indoor light sources and outdoor light coming through the windows. Or
an outdoor scene, where parts of the image are in direct sunlight, while others are in
shadow which is illuminanted by the blue skylight. Another example where single illu-
minant white balancing is known to give unsatisfactory results, is in pictures which are
taken using a camera-flash. Illuminant estimation methods that assume uniform illumina-
tion cannot accurately recover the illuminant chromaticity and its variations across such

1The materials in this chapter are used in a journal submission with the same name by Shida Beigpour,
Christian Riess, Joost van de Weijer, and Elli Angelopoulou

41
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Figure 4.1: Sample images from our database. The first row contains the original pho-
tographed images (transformed from their raw format to sRGB only for the purpose of
visualization). The bottom row shows the relative influence of the two incident illumi-
nants color-coded in blue and red.

scenes. Examples of multi-illuminant pictures, and the color-coded pixel-wise influence
of each illuminant, can be seen in Fig. 4.1.

Extending existing color constancy methods to successfully compute multi-illuminant
estimates is a challenging problem. Consider two of the most popular branches of exist-
ing color constancy approaches: statistics-based methods and physics-based ones. The
success of statistics-based techniques [17, 32, 45, 96] depends on the size of the statistical
sample. Applying these methods to small image regions introduces inaccuracies [14] and
is unlikely to yield stable results. Physics based methods either assume purely diffuse
scenes, e.g. [16, 40] which is not often applicable in real scenes, or exploit the presence
of specularities in an image, e.g [92], which occur very sparsely in an image. As a result,
a direct extension of global (image-wide) color constancy methods to region-based ones
is likely insufficient. Spatial constraints between the estimates will be required to obtain
acceptable results.

We propose a multiple illuminant estimation method which first extracts local esti-
mates. We overcome the inherent instability of local measurements by globally solving
the illuminant labelling problem by means of a Conditional Random Field (CRF). We
prove that several existing approaches, namely statistics- and physics-based methods, can
be written in the form of a CRF. The CRF formulation provides a natural way to: a) com-
bine various approaches into a single multi-illuminant estimate and b) incorporate spatial
information about the illuminant distribution. We show that representing these methods
by such a model allows us to robustly extend them to multi-illuminant estimation. Fur-
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thermore, we created a new database for multi-illuminant color constancy with highly
accurate, computationally extracted (instead of manually annotated) pixelwise ground
truth. Our database contains: a) laboratory images, for evaluation under close-to-ideal
conditions and b) real-world multi-illuminant scenes, which more closely approximate
real-world scenarios.

In summary, our main contributions in this chapter are:

• The formulation of multi-illuminant estimation as a CRF model.

• The expression of existing bottom-up approaches to color constancy as an energy
minimization problem.

• The creation of a new dataset for multi-illuminant estimation.

• An extensive experimental evaluation which shows that the proposed method ad-
dresses the intrinsic challenges in multi-illuminant scenes, i.e. the estimation of the
illuminant colors and their spatial distribution, with superior accuracy compared to
prior work.

4.2 Related Work

4.2.1 Single-illuminant Estimation

Stastistics based color constancy methods derive the estimate of the illuminant color from
assumptions on the statistics of reflectances in the world. The grey-world algorithm [17]
is the most well-known method of this family, and computes the illuminant of a scene
by assuming that the average scene reflectance is grey. Another popular method is the
MAX-RGB algorithm which computes the illuminant in a scene from the maximum re-
sponses in the RGB channels [58]. It was noted by Gershon et al. [39] that it is often
beneficial to assume that the average of a scene is equal to the average reflectance of a
database. Finlayson and Trezzi [32] showed that both the grey-world and the MAX-RGB
algorithms are instantiations of the more general shades-of-grey method which estimates
the illuminant of images by computing the Minkowski norm of the pixels in a scene. Van
de Weijer et al. [96] further extended this theory to also include image derivatives. Fi-
nally, Gijsenij et al. [45] showed that weighting edges according to their physical cause
(shadow, specularity, or material transition) can further improve results.

In comparison physics-based methods exploit the interaction between light and ma-
terial to infer the illuminant color in an image. Some methods e.g. [16, 40] assume the
scene is entirely composed of diffuse surfaces, while others e.g. [60, 92] exploit the pres-
ence of specular highlights. These latter methods are based on the dichromatic reflection
model [88] which models the reflected light as a combination of diffuse and specular
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reflectance. Based on the assumption of neutral interface reflection, the color of the spec-
ular reflectance is the same as the illuminant color and therefore an important cue for
color constancy (see, e.g., [88, 92]).

Gamut based methods exploit the fact that only a limited set of RGB values can be
observed under a known canonical illuminant. This set of RGB values can be represented
by a canonical convex hull in RGB space [34]. Thus, feasible illuminants can be estimated
by computing all possible mappings from a single image’s convex hull to the canonical
convex hull. The scene illuminant is heuristically selected from the feasible illuminants.
This method was further extended by Finlayson et al. [26] by constraining the possible
illuminants to be on the Planckian locus. Gijsenij et al. [43] extended this theory to
higher-order derivative structures of the images.

For a more complete overview of color constancy, see e.g. the recent overview arti-
cles [35, 44, 63].

4.2.2 Multi-illuminant Estimation

There are illuminant estimation methods explicitly designed to handle varying illumi-
nation. In 1997, Barnard et al. [5] were the first ones to develop a methodology that
automatically detects non-uniform illumination. They then proceeded with removing the
illumination variation, at which point they could apply any gamut-based color constancy
method. Though this method was pioneering at that time, its smooth illumination as-
sumption restricts its applicability on real-world images. Ebner [24] followed a different
approach of applying a diffusion-based technique on pixel intensities. However, he too
assumes a smoothly varying illumination, which together with his underlying theory of
regional grey-world can result in inaccuracies, especially in colorful scenes [50]. More
recently, Kawakami et al. [52] proposed a physics-based method specifically designed to
handle illumination variations between shadowed and non-shadowed regions in outdoor
scenes. Due to its explicit assumption of hard shadows and sky-light/sunlight combina-
tion (or even more general Planckian illuminants), this method does not generalize well
on arbitrary images. Gijsenij et al. [46] recently proposed an algorithm for scenes with
two light sources . The reported experimental results are promising. However, it is not
clear how to extend this methodology for non-local illuminant cues. When the chromatic-
ity of the two incident illuminants is known, Hsu et al. [50] proposed an algorithm for
high quality white-balanced images. However, their assumption of two known illumi-
nants limits the applicability of the method to close-to laboratory conditions. Thus, by
construction, none of the existing multi-illuminant estimation methods can handle arbi-
trary images and as such, none of them has been extensively tested on a large variety of
real-world images.
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4.3 Methodology

As discussed in the introduction, the single illuminant assumption, which is the basis of
many existing color constancy algorithms, is often unrealistic. Quite frequently multiple
illuminants are present in a scene. In such cases, the spatial distribution of the illumi-
nation conditions becomes very important. We propose to solve the multiple illuminant
estimation problem by using a Conditional Random Field (CRF) framework [54]. The
nodes in the graph represent patches, the labels correspond to illuminant colors, and the
edges connect neighboring patches. In such a representation local illuminant estimation
becomes equivalent to finding the maximum a posteriori (MAP) labelling of the CRF.
Such a framework facilitates both the local computation of illuminant color, as well as the
incorporation of spatial information about the distribution of illuminants.

More specifically, a conditional random field can be viewed as an undirected graph
model, globally conditioned on observations. Let G = (V , E) be a graph where V =
{1, 2, ..., N} is the set of nodes representing the N patches and E is the set of edges
connecting neighboring patches. We define a discrete random field X over the graph G.
Each node i ∈ V is associated with a random variable Xi ∈ X , which can take on a value
xi from the illuminant-color label setL = {l1, l2, ..., lk}. At each node i ∈ V we also have
a local observation Fi, which is the set of (R,G,B) values of all the pixels belonging to
the corresponding patch together with their spatial distribution. The probability P (X =
x̆|F) of a particular labelling x̆ = {x1,x2, ...,xN} conditioned on the observations F of
the entire image will be denoted as P (x̆|F). Then according to the Hammersley-Clifford
theorem

P (x̆|F) ∝ exp

(
−
∑
c∈C

ξc(x̆c|F)

)
, (4.1)

where ξc(x̆c|F) are potential functions defined over the observations F and the variables
x̆c = {xi, i ∈ c} belonging to clique c. A clique c is a set of random variables Xc which
are conditionally dependent on each other and C is the set of all cliques in G. Finding the
labelling x̆∗ with the maximum a posteriori (MAP) probability x̆∗ is then equal to

x̆∗ = arg max
x̆∈L

P (x̆ |F ) = arg min
x̆∈L

E (x̆|F) (4.2)

where L is the set of all possible labellings on X and E(x̆|F) is the corresponding Gibbs
energy defined as

E (x̆|F) =
∑
c∈C

ξc(x̆c|F) (4.3)

Hence, computing the MAP labelling is equal to finding the labelling which mini-
mizes the energy E(x̆|F). In our case, this means that obtaining the MAP assignment of
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illuminants to patches can be accomplished by finding that assignment which minimizes
the corresponding Gibbs energy. Considering only up to pairwise clique potentials, the
energy function becomes:

E (x̆|F) =
∑
i∈V

φ (xi|Fi) + θp
∑

(i,j)∈E

ψ ((xi,xj)|(Fi,Fj)) (4.4)

where φ denotes the unary potential and ψ the pairwise potential. The unary potentials φ
penalize the discrepancy between the observations, i.e. the colors of the pixels in a patch
Fi, and the solution, i.e. the illuminant-color label assigned to the patch. The pairwise
potentials ψ provide a definition of smoothness by penalizing changes in the labels of
neighboring patches. Then the constant θp > 0 controls the balance between smoothness
and data fit. In the next section we propose various unary potentials which allow us to
represent several well-known illumination estimation algorithms as CRFs.

4.4 Unary Potentials

We show that by choosing a particular unary potential we can express several existing
color constancy methods as an error minimization problem. When we use a pairwise
potential function that enforces a single label for all patches, we obtain the same result as
traditional single illuminant estimation methods. Reducing the influence of the pairwise
potential results in multi-illuminant estimates for the scene.

4.4.1 Statistics-based Color Constancy

There exists a family of color constancy methods which is based on the statistics of re-
flectances in the world. Examples of this group of methods are grey-world, grey-edge and
max-RGB algorithm [17,32,96]. We show that several of these algorithms can be written
as an error minimization problem.

We denote f j = (f jR, f
j
G, f

j
B)T to be the j-th pixel in an image. We assume that an

image is segmented into a number of patches P = {p1, p2, ..., pN} where pi contains the
indices to the pixels in patch i. From the set of observations Fi in a patch we can obtain
an estimate of the local illuminant color i(Fi), which, for conciseness, we will denote as
ii. If the estimate is computed with the grey-world algorithm, then the local illuminant
color is determined by the average color in the patch, as defined by

ii =

∑
j∈pi

f j∥∥∥∑
j∈pi

f j
∥∥∥ , (4.5)

where ‖.‖ is the L2 norm which is applied to ensure that ii has unit length. Illuminant
estimation methods are generally evaluated based on the angular error, which for two
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normalized illuminants (typically the estimated and true illuminant) is given by

ϕ(i1, i2) = arccos
(
(i1)Ti2

)
. (4.6)

We now define the statistics-based unary potential φs, which defines the cost for patch
i to take on illuminant xi as

φs(xi|Fi) = wiρθ
(
ϕ(ii,xi)

)
(4.7)

where wi is a scalar weight per patch, and ρ is the error norm. For example, choosing
ρ(e) = e2 yields the least squares error. The influence of outliers on the unary potential
can be reduced by choosing a robust error norm. We discuss several choices of error
norms and weights below.

Choosing as an error norm of ρ(e) = 1 − cos(e) and for the weights per patch the
summed intensity of its patches wi = ‖

∑
j∈pi f j‖, we obtain the following unary potential

φs(xi|Fi) =
∥∥∥∑
j∈pi

f j
∥∥∥(1− cos

(
ϕ(ii,xi)

))
. (4.8)

When the illuminant given by the label, xi, and the illuminant derived directly from the
observations are equal this unary potential is zero. When they are maximally different
this unary potential is equal to the summed intensity of the patch. In Appendix 7.2 we
include a proof showing that this particular unary potential leads to the standard grey-
world solution when we enforce a single illuminant label for all patches in Eq. 4.4.

We can also use the more general class of statistics based illuminant estimation [96],
given by

in,mi ≈ m

√√√√∑
j∈pi

∣∣∣∣∂nf jσGW

∂xn

∣∣∣∣m , (4.9)

where n is the differentiation power, and m is the Minkowski norm. σGW denotes the
standard deviation of a Gaussian smoothing operator that is applied to the image prior to
the differentiation. Depending on the choice of parameters m and n the estimate is equal
to the grey-world, shades of grey, or grey-edge algorithm. As the unary potential for the
general case we propose

φs(xi|Fi) =

∥∥∥∥∥∥ m

√√√√∑
j∈pi

∣∣∣∣∂nf jσGW

∂xn

∣∣∣∣m
∥∥∥∥∥∥
(

1− cos
(
ϕ(xi, ii)

))
. (4.10)

For n = 1 and m = 1, minimizing Eq. 4.4 with this unary potential results in the standard
grey-edge algorithm [96].

We proceed by proposing several adaptations to the unary potential to adapt it for
multi-illuminant estimation. If we increase the influence of the pairwise potential, by
choosing a large θp in Eq. 4.4, we can enforce the whole image to have the same label,
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and therefore the same estimate for the illuminant. There are several choices for error
norm and patch weight which in this case lead to well-known color constancy algorithms.
If we look at the other extreme where we pick θp = 0 every patch would take on the
label of the illuminant which is closest (in an angular error sense) to its local estimate.
However, the local estimates of the statistical color constancy algorithms are very noisy
and in general this will lead to unsatisfying results. This can be countered by choosing an
intermediate θp (by means of cross validation), that enforces multiple neighboring patches
to take on the same label, and thereby reducing the noise of the statistical estimate. We
will look at two additional adaptations to the unary potential which improve robustness
with respect to noisy statistical measurements.

Robust error norm: To reduce the influence of outliers on the energy, we found the usage
of a robust error norm indispensable. Throughout this chapter, we use the following error
norm

ρσr(e) = 1− exp
(
− e2

2σ2
r

)
. (4.11)

Its main effect is that outliers have less influence on the overall energy. Using robust error
norms in a CRF formulation has been found beneficial before.

Uneven color balance: Statistical methods are known to be biased towards large seg-
ments of the same color. To counter this we propose the following adaptation:

φs(xi|Fi) =
(
wi
)q
ρσr (ϕ (ii,xi)) . (4.12)

The parameter q allows to dampen the results of uneven color balance in the image. Con-
sider the standard grey-world assumption (p = 1 and n = 0) if we then choose q = 0, the
unary potential is equal to

φs(xi|Fi) =
(

1− cos
(
ϕ(xi, ii)

)
,
)
. (4.13)

which is one of the more popular implementation of grey-world where instead of each
pixel, one value for each patch is chosen. This was also proposed by Barnard et al. [6] to
counter the dominance of large uniformly colored regions in images on the outcome. In
the results we consider q ∈

{
0, 1

2
, 1
}

.

4.4.2 Physics-based Color Constancy

Another family of color constancy methods is based on the physics of light and surface
interactions [16, 40, 60, 92]. In this section, we focus on the approach by Tan et al. [92]
because it is very competitive performance-wise and is applicable to a wider family of
surfaces that exhibit a mixture of diffuse and specular reflectance. More specifically, we
follow the extension by Riess et al. [81] which can be applied to local regions and even
in patches that are just moderately specular.

Specularity based approaches follow the neutral interface assumption which states that
the color of pure specularities is the color of the illuminant. In general, these approaches
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are comprised of two steps: a specularity detection step where possible regions which
contain specularities are identified, and an illuminant estimation step based on the color
of the detected specular regions.

The method proposed by Tan et al. [92] exploits the inverse-intensity chromaticity
(IIC) space. IIC is a two-dimensional space where the horizontal axis represents the
inverse intensity 1/‖fj‖1 and the vertical axis is given by a pixel’s chromaticity. Thus, a
pixel fj = (fRj , f

G
j , f

B
j )T is mapped to

f cj →
(

1

‖fj‖1

,
f cj
‖fj‖1

)
. (4.14)

where ‖·‖1 is the L1-norm and c ∈ R,G,B.

The advantage of IIC is that the relationship between image chromaticity and illumi-
nation chromaticity becomes linear. According to [92], one generates per color channel a
scatter plot of the pixels in inverse-intensity chromaticity space. In IIC space purely dif-
fuse pixels of the same material and albedo form a horizontal cluster. Pixels of the same
material and albedo but with a specular component form a triangular-shaped cluster. The
base of the triangle intersects the diffuse horizontal cluster. The tip of the triangle inter-
sects the vertical axis. This point of intersection on the vertical axis is the corresponding
illuminant chromaticity component icj .

Tan et al. [92] identify potential specular regions by thresholding on brightness and
saturation values, an approach that was originally proposed by Lehmann and Palm [61].
The two thresholding parameters for this method, tb and ts, were set to 0.2 and 0.8, respec-
tively. We then average the intensities of a specular pixel. A patch is considered specular
if the sum of specular intensities ssp exceeds a threshold tsp. The specularity-based il-
luminant estimate is only employed if a sufficiently large percentage of pixels within a
patch are detected as specular. Thus, the detection of specular regions is independent of
the local patches over which the illuminant color is estimated.

The actual estimation is conducted in two steps [81]. First, a set of noisy estimates is
obtained from rectangular subregions within one patch. The pixels of this region are pro-
jected in one IIC space per color channel. If the pixels do not satisfy two straightforward
shape criteria (i.e., do not exhibit an elongated shape towards the y-axis), no estimate is
obtained from this grid cell [81]. The intercept between the y-axis and the eigenvector that
is associated to the largest eigenvalue of the covariance ellipse determines the illuminant
color estimate icj for the j-th subregion in the c-th color channel.

In the second step, all estimates per patch are collected in per-color channel histograms
HR

IIC,HG
IIC,HB

IIC. and the final estimate is determined as

ip = argmax
ic
Hc

IIC(ic) ∀c ∈ {R,G,B} , (4.15)

whereHc
IIC(ic) denotes the count for ic in Hc

IIC. For further details, please refer to [81].
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Our physics-based unary potential is then defined as:

φp (xi|Fi) = wpρσr (ϕ (ip,xi)) (4.16)

where ρσr (·) is the robust error norm introduced in Eq. 4.11. The weight wp is a binary
weight, defined on the specularity threshold tsp as

wp =

{
1 if ssp ≥ tsp
0 otherwise . (4.17)

4.4.3 Combining Statistical and Physics-based Illuminant Estimation

Both the statistical and physics-based illuminant estimation can be incorporated in a CRF
framework using different unary potentials. An advantage of defining each method as
an energy minimization problem is that there is a natural way for combining them into a
single color constancy method by defining the local potential as

φ (xi|Fi) = (1− λp)φs (xi|Fi) + λpφ
p (xi|Fi) . (4.18)

where λp is weighting the importance of the physics-based unary potential versus the
statistical-based unary potential. Minimizing this energy will combine information from
statistical cues as well as specularities into the final local illuminant estimate.

4.4.4 Constraint Illuminant Estimation

Constraint illuminant estimation methods have been popular because they allow to in-
corporate prior knowledge about the illuminants. Several methods have been proposed
which constrain the illuminant set to be on the Planckian locus [26]. Incorporating such
constraints is straightforward in our framework. The constraints can be enforced on the
illuminant label set L. In this work, we use a simple constraint where we exclude illu-
minants which are too saturated, i.e., {∀i|ϕ (li, iw) < φd} where iw = 1√

3
(1, 1, 1)T is the

white illuminant.

As a second constraint on the illuminants, we use the fact that in the majority of the
multi-illuminant scenes only two illuminants are present. Given a pair of labels li and lj
the optimal labeling x̆∗(i, j) for the observation F is determined with:

x̆∗(i, j) = arg min
x̆∈Lij

E (x̆|F) . (4.19)

where Lij is the set of all possible labellings on X restricting the illuminants to li and lj .
The two illuminant constrain is enforced by finding those two illuminants which minimize
the energy function. Thus, the selected illuminants are computed with:

L̂ = arg min
(li,lj)∈L2

(E(x̆∗(i, j)|F)) (4.20)

Note that this also allows for single illuminant estimation in the case that i = j.
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4.5 Pairwise Potential

The purpose of the pairwise potential function, ψ ((xi,xj)|(Fi,Fj)) is to ensure, when
appropriate, the smooth transition of labels in neighboring vertices. Similar to Boykov
et al. [15] we consider pairwise potentials that resemble a well. In MRFs, especially as
described in [15], ψ(xi,xj) = u(1 − δij), where u is the well ”depth” and the function
(1 − δij) controls the shape of the well. In [15], u is defined as a constant and the unit
impulse function, δij = δ(xi − xj), determines the well-shape.

In a CRF (see also [?]) the ”depth” depends on the observations h(Fi,Fj). Thus, our
pairwise potential function has the form:

ψ ((xi,xj)|(Fi,Fj)) = h(Fi,Fj)(1− δij) (4.21)

We also propose the use of a smoother well function which permits small deviations in
illuminant colors between neighboring patches. Thus, our well is defined as:

(1− δij) = (1− cosη(ϕ (xi,xj))) (4.22)

where η controls the sharpness of the impulse-like function.

If two neighboring labels are distinct, then there are two possibilities. It can be that the
two patches, though spatially close, are illuminated by distinct illuminants, in which case,
we should allow for a transition in labels and not significantly penalize the difference in
their values. It may, however, be the case that an erroneous label was assigned and the two
patches are illuminated by the same illuminant. The depth function h(Fi,Fj) attempts to
distinguish between these two cases.

In this work, we use the insight of Logvinenko et al. [65] that the shape of an edge
(curvature, fuzziness and closedness) conveys discriminatory information about illumi-
nant versus material edges. Influenced by this idea, we use the length of the border
between two adjacent patches as an indicator of whether the patches should be sharing
incident illumination:

h(Fi,Fj) = length (boundary (Fi,Fj)) . (4.23)

Longer boundaries imply that the distinct color of the patches is due to differences in
material and, hence, the illuminant labels of the adjacent patches should be similar.

However, the proposed framework is general and allows the incorporation and/or
combination of multiple methods that can provide information on the discontinuity of
illuminants in the scene. For example, one could employ the Retinex [58] heuristic
that illumination is expected to vary slowly, thus large changes in surface reflectance
are due to differences in material. A Retinex-inspired depth function could then be
h(Fi,Fj) = exp

(
−βR‖F̄i−F̄j‖2

)
,where F̄i is the average (R,G,B) value in patch pi.
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Yet another option is to employ photometric quasi-invariants [95] which help distinguish
between shading edges and material edges.

4.6 MIRF: Overall Algorithm

Our algorithm which leads to multi-illuminant estimation is presented in this section.
We call it Multi-Illuminant Random Field (MIRF). In the first step we divide the image
into subregions or patches. There are several ways used in the literature for obtaining
adequate patches. We decided against using superpixels because they are more likely to
follow object boundaries rather than subtle illuminant changes. Hence, a grid provides
more diverse patch content, and thus more information for the statistical estimators.

Next, we obtain a local illuminant estimate for each patch using the Eq. 4.9 and
Eq. 4.15. To add more robustness, these illuminants are then clustered to K illuminants
based on their chroma. Additionally, we add a single illuminant estimate I0 to the illu-
minant set by applying Eq. 4.9 on the whole image. To reduce the computational cost,
we reduce the number of labels by averaging the ones whose angular distance is less than
half a degree. We calculate the unary potentials using equation Eq. 4.12 and Eq. 4.16.

In the next step, for every pair of labels we perform the expansion on the graph and
obtain the proper labeling (the assignment of the labels to patches) along with the esti-
mation error for the whole image (Eq. 4.19). The pair of two labels which minimizes the
error is then chosen (Eq. 4.20). Finally, the label colors are assigned to the patches and the
estimated illumination map M is generated. In the last step of the algorithm, a Gaussian
smoothing filter with standard deviation σp is applied to M as a post processing step in
order to reduce artifacts created by the patch boundaries. The methodology is compactly
presented in Algorithm 2.

4.7 Multi-illuminant Multi-object (MIMO) Dataset

Several datasets are available for single illuminant estimation. The first datasets where
taken under laboratory settings with controlled illumination [4,6]. Later datasets — often
much larger — consist of images of real-world scenes where the ground truth is computed
from a reflectance target in the scene, which is either a grey ball [19] or a Macbeth color
checker [37]. Gijsenij et al. [46] have introduced a multi-illuminant dataset. To obtain the
ground truth of each pixel, the area of every light source is manually annotated. However,
manual annotations are difficult to do on complex scenes, and prone to errors2.

2From correspondence with the authors of [46], we learned that the PhD student involved in the work
left with the data and is not responding to request of returning the raw data. Only compressed version of the
data are currently available. Additionally, it is also not possible to recompute the ground truth in a higher
quality, due to this reason.
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Algorithm 2 Method
1: Apply an m × m grid on the image to divide it into a set of patches P =
{p1, p2, ..., pN}

2: Extract the local illuminant colors for each patch I = {i1, i2, ..., iN} (using Eq. 4.9
and Eq. 4.15).

3: Cluster the illuminants (using K-means) and get the K centers. Add the single esti-
mate I0.

4: Reduce the number of labels by removing the ones whose angular distance is less
than .5 degrees. L denotes the set of remaining illuminants.

5: Calculate the unary potentials (Eq. 4.12 and Eq. 4.16).
6: for all li and lj ∈ L do
7: Calculate x̆∗(i, j) (Eq. 4.19)
8: end for
9: Find the pair of illuminants L̂ (Eq. 4.20) which produce the lowest error when as-

signed to the image patches.
10: Back project L̂ to create an illumination map M .
11: Post processing: Apply Gaussian smoothing on M to fade out the artificial edges of

the grid.

To address these limitations, we propose two new datasets for multi-illuminant estima-
tion: one taken in a controlled laboratory setting, and one consisting of real-world indoor
and outdoor scenes. Each of the sets includes complex scenes with multiple reflectances
and specularities. A variety of lighting conditions and illuminant colors are presented
in the dataset. Instead of manually annotating the ground truth like [46], we exploit the
linearity of the camera response to compute a pixelwise ground truth for our dataset. This
way we avoid the subjective task of manually segmenting the image and obtain high-
resolution ground truth. In addition, this allows us to have a weight of each illuminant at
each pixels rather than a binary decision for each pixel on the dominant illuminant. As
can be seen in Figure 4.3 large regions in the image are lit by both illuminants.

4.7.1 Data Acquisition

We used the Sigma SD10 single-lens reflex (SLR) digital camera which uses a sensor with
the unique Foveon X3 sensor technology. We chose this camera for its Bayer-pattern-free
image sensor and lossless raw 12 bit per color high quality output. Matlab code for the
perceptual enhancement of the images has been made publicly available by Parraga et al.
[75]. We captured the images in the linear RAW format, i.e. without additional gamma
or JPEG compression. The original image size is 2304 × 1531 pixels, i.e. roughly 3.5
megapixels.

To compute the ground truth we exploit the linearity of light: we use the fact that the
scene taken under both illuminants is equal to the sum of the two scenes taken under a
single illuminant. The basic idea is that we can use the single illuminant images to derive
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Figure 4.2: Example input images to compute the ground truth. In the top row, from
left to right: scene under illuminant 1, 2, and a mixture of 1 and 2. In the bottom row:
scene under separate illuminants 1 and 2 again, but with a Macbeth color chart to estimate
the illuminant chromaticity. On the bottom right, the ground truth is shown, i.e. the two
illuminant colors with their spatial distribution. Note that here the images are transformed
from their original raw format to sRGB for visualization.

the relative strength of the two illuminants for each pixel in the multi-illuminant scene. In
addition, we acquire two images with either the Macbeth color chart or a grey reflectance
target for the two single illuminant scenes, from which we can estimate the illuminant
color. The five indoor scenes taken are shown in Fig. 4.2.

Since the single illuminants sum up to the two-illuminant scene, in reality we only
need two of the three scenes to derive the third one. We use this fact for the scenes where
it was not possible to obtain the two single illuminant images. An example is an indoor
scene with indoor illuminant and outdoor light coming through the window (which we
were unable to block). Taking two images - one with both illuminants and one with only
the outdoor lighting after switching off the indoor illuminant- we can compute the ground
truth for this scene by using the linearity relation.

Consider the ground truth computation in more detail. We first obtain the colors of the
illuminants using the Macbeth color chart, or a grey reflectance target for the lab scenes,
respectively. As explained above, a pixel fab from a two-illuminant scene is equal to the
sum of the pixels from two scenes with a single illuminant, i.e. fab = fa + fb. We veri-
fied that this assumption holds for the Sigma SD10 single-lens reflex camera. Thus, for
every pixel, we compute the relative contribution of illuminant a. Using the von Kries
assumption, the images that are only exposed to a and b are divided by their respective
illuminant chromaticity to obtain scenes under white illumination. The intensity differ-
ences in these images reveal the individual influence of each illuminant. We denote a pixel
of the illumination-normalized images in the green channel as f̂a,g and f̂b,g, respectively.
The relative difference for illuminant a in the green channel is obtained for each pixel as

ra,g =
f̂a,g

f̂a,g + f̂b,g

, (4.24)
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See appendix 7.3 for a derivation of Eq. 4.24.

In principle, any color channel could be used. However, we found the green channel
yielded the most stable (noise-resilient) results.

The ground truth illuminant color iab of a pixel fab of the mixed-illuminant image is
then a pixelwise linear interpolation of a and b,

iab = ra,g · a + (1− ra,g)b . (4.25)

4.7.2 Controlled Laboratory Scenes

The first dataset is taken in a controlled laboratory setting. The scenes vary from simple
single-object scenes to more difficult multi-object (cluttered) scenes. The scene content
also varies between diffuse objects, specular objects, and mixtures of diffuse and specular
objects. In total, the dataset consists of 10 scenes, each under 6 distinct illumination
conditions. For computing the ground truth, each scene was captured also under only one
illuminant from each position. After removing images that are misaligned, we ended up
with a total of 58 benchmark images. We used three differently colored lights, referred
to as “blue”, “white” and “red”, with a chromatic difference of 5.9◦ between blue and
white, 6.1◦ between white and red, and 11.4◦ between blue and red. Each scene is lit from
two different angles (referred to as “left” and “right” illumination) by different pairs of
illuminants. To reduce the influence from ambient illumination, the data acquisition for
this set has been done in a box with black diffuse walls.

The left side images in the Fig. 4.1 and Fig. 4.3 show two example scenes illuminated
by a red illuminant from the left and a white illuminant on the right. The lion in Fig. 4.1
is an example of a single object scene and the toys in the Fig. 4.3 are an example of a
mixture of specular and diffuse objects. The bottom row shows the influence of both
illuminants. A stronger blue component denotes stronger influence of the left illuminant,
while red represents the illuminant on the right.

4.7.3 Real-world Scenes

In order to test our framework on more challenging real world images, we captured 20
indoor and outdoor scenes. Here the data is converted to sRGB to mimic a more standard
user setting (the images are processed without gamma to preserve the linearity of the
data). The scenes contain two dominant illuminants, namely an ambient light source and
a direct light. For the outdoor images, shadow regions provide ambient light. For indoor
images, the room illumination is used. The direct light source is either added from a
projector, the sun, or another additional light bulb. In Fig. 4.1 and Fig. 4.3, two example
scenes are provided. One scene shows a two illuminant indoor scene, and the second
scene shows a strong color shadow in an outdoor scene. The main difference between the
two datasets is that in the real-world scenes, the ambient illuminant is present on almost
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Figure 4.3: Example images from our laboratory and real-world dataset. The first row
contains the original photographed images (transformed from their raw format to sRGB
only for the purpose of visualization). In the bottom row, the relative influence of the two
illuminants is shown, color-coded from blue to red.

the whole image area, while the direct illuminant covers only a part of each scene.

4.8 Experiments

In this section we compare the performance of the proposed method MIRF to several
other approaches. As an error metric, we obtain an error per image by computing the
mean of the pixelwise angular distance (Eq. 4.6) between the estimated illuminant color
and the ground truth maps. Pixels that were too dark (i.e., for our 12 bit images, pixel
intensities below 50) have been excluded from evaluation due to their relatively large noise
component. Over these per-image errors, we computed the median and mean errors per
dataset. The evaluation was conducted on three datasets, namely our proposed laboratory
dataset, our proposed real-world dataset, and the outdoor dataset that has been used by
Gijsenij et al. [46].

As a baseline, we computed results for a number of established algorithms that address
color constancy under uniform illumination. So far, little prior work exists for estimating
non-uniform illumination. We implemented the recent method by Gijsenij et al. [46], as
it showed very competitive performance in a number of experiments.

Both, the method by Gijsenij et al. [46] and MIRF use as input illuminant estimates
with small spatial support. Such illuminant estimates can be obtained from different es-
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timators. We chose to use grey world (“GW”), which can be obtained from Eq. 4.9 by
using the parameters n = 0, m = 1, σGW = 0, white patch (“WP”, with n = 0, m = ∞,
σGW = 0), first order grey-edge (“GE1”, with n = 1, m = 1, σGW = 1) and second-order
grey edge (“GE2”, with n = 2, m = 1, σGW = 1). Additionally, we use the physics-
based estimator, as presented in Eq. 4.15, denoted as “IEbV” (derived from “illuminant
estimation by voting”). We used these base estimators for comparing the performance of
the three families of methods as described above. Additionally, we provide the error if the
illuminant color is assumed to be already perfectly balanced to white. The “do nothing”
(“DN”) estimator shows these results. For the evaluation on our proposed dataset, we
resampled the images to 20% of their original size to reduce the computational load.

4.8.1 Parameters

A number of parameters have been fixed for the evaluation of MIRF. As patches we used
a rectangular grid with cells of 20× 20 pixels for the downscaled version of our proposed
dataset, and cells of 10 × 10 pixels for the outdoor images by Gijsenij et al. [46]. In
both cases, this corresponds to a cell size of about 15× 20 pixels. The number of cluster
centers k for the k-means algorithm has been set to the square root of the number of grid
cells. To obtain the physics-based estimates, we set the Lehmann and Palm parameters
tb = 0.2 and ts = 0.8, and the overall specularity threshold tsp = 10 for pixel intensities
between 0 and 1. The subgrid size for single physics-based estimates was 20× 20 pixels
with a step size of 10 pixels3, as in [81]. The settings for the CRF framework were as
follows: the saturation threshold φd for illuminant labels (see Sec. 4.4.4) is set to 15◦. The
parameter σr in Eq. 4.11 for robust thresholding on the unary potentatials has been set
to 2.5◦. Finally, the standard deviation σp for the Gaussian smoothing on the reprojected
illuminant labels has been set to 10.

Besides these globally fixed parameters, we determined three parameters via two-fold
cross validation on each dataset. These were the weighting between unary and pairwise
potentials θp (see Eq. 4.4), the power q (see Eq. 4.12) for computing the unary potentials,
and finally, if datacosts from different estimators are combined, λp (see Eq. 4.18) for the
relative influence of physics-based and statistical estimators.

4.8.2 Comparing Single- and Multi-illuminant Methods

In Tab. 4.1, we present the mean and median errors on our proposed laboratory dataset. In
the column “single-illuminant”, these results are based on a single global illuminant es-
timate. The columns “Gijsenij et al.” and “MIRF” report results for the multi-illuminant
methods by Gijsenij et al. [46] and our proposed algorithm “Multi-Illuminant Random

3Note that for the downscaled images from our dataset, this leads to only one estimate per patch, i.e.
the voting part is effectively clamped off. However, if the method is applied on larger images (or patches,
respectively), the histogram voting is used.
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Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 10.6◦ 10.5◦ - - - -
GW 3.2◦ 2.9◦ 6.4◦ 5.9◦ 3.1◦ (-3%) 2.8◦ (-3%)
WP 7.8◦ 7.6◦ 5.1◦ 4.2◦ 3.0◦(-41%) 2.8◦(-33%)
GE1 3.1◦ 2.8◦ 4.8◦ 4.2◦ 2.7◦(-13%) 2.6◦ (-7%)
GE2 3.2◦ 2.9◦ 5.9◦ 5.7◦ 2.6◦(-19%) 2.6◦(-10%)
IEbV 8.5◦ 8.3◦ - - 4.5◦(-47%) 3.0◦(-64%)

Table 4.1: Comparative results on the proposed laboratory dataset.

Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 8.8◦ 8.9◦ - - - -
GW 5.2◦ 4.2◦ 4.4◦ 4.3◦ 3.7◦(-16%) 3.4◦(-19%)
WP 6.8◦ 5.6◦ 4.2◦ 3.8◦ 4.1◦ (-2%) 3.3◦(-13%)
GE1 5.3◦ 3.9◦ 9.1◦ 9.2◦ 4.0◦(-25%) 3.4◦(-13%)
GE2 6.0◦ 4.7◦ 12.4◦ 12.4◦ 4.9◦(-18%) 4.5◦ (-4%)
IEbV 6.0◦ 4.9◦ - - 5.6◦ (-7%) 4.3◦(-12%)

Table 4.2: Comparative results on the perceptually enhanced real-world images.

Field”. It turns out, that some single-illuminant estimators, namely GW, GE1 and GE2, al-
ready perform relatively well on our dataset. This comes from the fact that in many cases,
the ground truth illuminant colors are not very distant from each other. Thus, the overall
error can be small, even if only one of the two illuminants (or a color in between both
illuminants) is reported as global estimate. However, in all cases, MIRF improves over
these estimates. The physics-based estimates for IEbV yield a considerably weaker per-
formance in the mean error, which might be due to the fact that the individual patches are
relatively small, such that the voting becomes ineffective. The method by Gijsenij et al.
performed surprisingly weak, even worse than the single-illuminant estimators. We inves-
tigated this case more closely. It turned out that relatively often, weak candidate estimates
are selected by the method, which penalizes the overall algorithm. MIRF avoids this
particular problem, as the remaining energy from the energy minimization is used as a
criterion for the quality of a solution. In Sec. 4.8.3, we excluded this source of error, to
directly compare the performance for determining only the distribution of illuminants.

Table 4.2 shows a similar tendency in the results, but this time on our proposed real-
world dataset. Note that the overall errors are higher, which is mainly due to the fact that
the images have been perceptually enhanced, such that the overall spread of the colors in
the image is larger. The largest gain is obtained using localized estimates of the physics-
based estimates. This performance gain comes mostly from the robust error metric, which
suppresses gross outliers in the physics-based estimates.

In Tab. 4.3, we report results on the outdoor dataset by Gijsenij et al. [46]. Note
that the reported numbers for the method by Gijsenij et al. deviate from what the authors
reported in their paper. When investigating their method, we noted that the evaluation
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in [46] was conducted on the non-gamma-corrected images4. In our implementation,
we performed gamma correction on the input images, as it was also originally intended
by [46]. The overall errors are higher than in the previous two experiments. First, the
images of this dataset are relatively small snippets, consisting mostly of two relatively
homogeneous regions in sunlight and shadow. Thus, the underlying localized illuminant
color estimators have to estimate on relatively uninformative input. Note that we did not
evaluate on the laboratory data by Gijsenij et al., as we found upon manual inspection
that the ground truth for these images is not very reliable.

4.8.3 Benchmarking Separate Components of the Algorithm

Estimating multiple illuminants can be considered as two interleaved tasks, namely es-
timating the illuminant colors and their spatial distribution. The recovery of the spatial
distribution was not required for single-illuminant estimators. Hence, we empirically in-
vestigated the capability of finding the proper spatial distribution in our method versus the
method of Gijsenij et al., by providing them with the ground truth illuminant colors. The
results on our laboratory dataset are shown in Tab. 4.4. In the left two columns, it can be
seen that the performance of the method by Gijsenij et al. greatly improved, compared to
Tab. 4.1. Thus, we conclude that the selection of the correct illuminant color is one of the
major challenges in the method of Gijsenij et al.. In the right columns, we show the per-
formance of the proposed method. The best performing method is first order grey edge,
with a median error of 1.7◦. This shows that the spatial distribution of the illuminants is
well approximated by our proposed framework.

In another experiment, we investigated the relative gain of the various improvements
we have introduced (see Tab. 4.5). As an example illuminant estimation algorithm, we
used the grey world (“GW”) estimator. If we remove the constraint of two illuminants
and allow an arbitrary number of illuminants, the error increases significantly on our
two datasets. Similarly, the robust error norm (see Eq. 4.11) yields an important per-
formance gain on both our datasets. Removing the parameter q which counters uneven
color balances only effects results on the Gijsenij dataset. Finally, removing the saturation
constraint on the illuminants results in a performance drop on all datasets.

4Without gamma correction, we obtain the same numbers as reported in [46].

Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 4.4◦ 3.6◦ - - - -
GW 15.0◦ 13.8◦ 12.2◦ 13.8◦ 10.0◦(-18%) 10.1◦(-27%)
WP 10.3◦ 11.3◦ 10.0◦ 8.4◦ 7.7◦(-23%) 6.4◦(-24%)
GE1 10.1◦ 10.1◦ 8.5◦ 7.6◦ 7.1◦(-16%) 4.7◦(-38%)
GE2 8.7◦ 8.5◦ 8.1◦ 7.4◦ 7.2◦(-11%) 5.0◦(-32%)
IEbV 10.0◦ 7.3◦ - - 9.3◦ (-7%) 7.3◦ (-0%)

Table 4.3: Evaluation results on the gamma corrected version of the outdoor dataset by
Gijsenij et al. [46]
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Gijsenij MIRF
Mean Median Mean Median

GW 2.4◦ 2.3◦ 2.3◦ 2.3◦

WP 2.2◦ 2.1◦ 2.0◦ 1.9◦

GE1 2.1◦ 2.0◦ 1.8◦ 1.7◦

GE2 2.2◦ 2.1◦ 1.9◦ 1.8◦

Table 4.4: Performance on our laboratory data for recovering the spatial distribution. The
ground truth illuminant colors are provided to the methods.

4.8.4 Combination of Statistical and Physics-based Estimates

Table 4.6 demonstrates another benefit of the framework. By defining the unary potentials
as a weighted sum of the physics-based and the statistical unary potentials, we are able
to combine cues from multiple methods in a natural way. To determine the parameters,
we performed a full cross-validation over θp, q and λp (see Sec. 4.8.1). It turns out, that
a combination of physics-based and statistical estimates can indeed further improve the
results (confer Tab. 4.6 (left) and Tab. 4.1), in particular for the white patch and first order
grey edge estimates. On the other hand, the performance of the combination of IEbV
with GE2 slightly dropped, thus there is no guarantee that a combination of the unary
potentials brings a performance gain.

The right columns of Table 4.6 show the performance on our proposed real-world
dataset. It is interesting to note that the impact of combined unary potentials on the
overall performance is quite different from the experiments on the laboratory data. Here,
the majority of the results is slightly worse than the results reported in Tab. 4.2. This
behavior, however, is not consistent. For instance, the mean error of IEbV-WP lies slightly
below the reported error in Tab. 4.2, similarly the median error for IEbV-GE2. From these
results, we conclude that the framework is general enough to allow the straightforward
integration of multiple cues. However, whether such a combination indeed brings the
desired performance gain has to be investigated on a case-by-case basis.

Laboratory data Real-world data Gijsenij et al.
Mean Median Mean Median Mean Median

MIRF 3.1◦ 2.8◦ 3.7◦ 3.4◦ 10.0◦ 10.1◦

all lights 4.6◦ 4.0◦ 4.2◦ 4.0◦ 10.0◦ 10.2◦

w/o Eq. 4.11 3.9◦ 3.7◦ 4.3◦ 4.0◦ 10.1◦ 10.1◦

q = 1 3.0◦ 2.8◦ 3.6◦ 3.3◦ 10.7◦ 10.3◦

w/o φd 3.6◦ 3.3◦ 4.6◦ 3.2◦ 11.2◦ 10.1◦

Table 4.5: Grey-world results for different configurations of the proposed framework for
each dataset.
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Laboratory data Real-world data
Combination variant Mean Median Mean Median
IEbV-GW 3.0◦ 2.8◦ 4.2◦ 4.3◦

IEbV-WP 2.6◦ 2.5◦ 4.0◦ 3.4◦

IEbV-GE1 2.6◦ 2.4◦ 4.5◦ 4.2◦

IEbV-GE2 2.8◦ 2.8◦ 4.7◦ 3.9◦

Table 4.6: Combination of physics-based and statistical methods on our laboratory data.

4.8.5 Automatic White Balance

Example results for automatic white balancing are shown in Fig. 4.4. All images are con-
trast enhanced for improved visualization. In the top row, from left to right, the input
scenes “toys”, “lion”, “camera”, and “detergents” are presented. The second row shows
perfectly white balanced output using the computed ground truth. The third row shows
white balancing results for a single global grey world estimator. The resulting images
suffer from a color cast, as both illuminant colors in the scene are corrected with only one
estimate. Using the same estimator within the framework by Gijsenij et al. [46] (fourth
row) clearly improves over the global estimator. However, the images look more greyish
and with faded colors as the local estimations were not able to fully separate the effect
of illumination from the object color. Also the “lion” is more reddish on the right side.
Finally, in the last row, the output of the proposed MIRF is shown. In this case, the im-
proved performance results from the improvement in the selection of the illuminant color,
thus the global color cast is removed. Some inaccuracies in the estimation of the spatial
distribution of the illuminants may lead to local color casts (e.g., several bluish “blobs”
overlay considerable regions of the “camera” image). However, the overall performance
of MIRF is in general quite solid, as demonstrated in the “toys” and “detergents” images.

4.9 Conclusions

We proposed the algorithm “Multi-Illuminant Random Field” (MIRF) as an approach for
color constancy under non-uniform illumination. In scenes that are exposed to multiple
illuminants, it is required to estimate the illuminant colors and their spatial distribution.
In our approach, these two tasks are jointly solved within an energy minimization frame-
work. At the same time, the framework is general enough to a) allow the natural com-
bination of different illuminant estimators, like statistical and physics-based approaches,
and to b) allow the incorporation of additional cues if they are available, like, for instance,
estimates for illuminant edges.

For quantitative evaluation, we present a highly accurate, per-pixel ground truth dataset
for scenes under two illuminants. It consists of 58 laboratory images and 20 real-world
images. In contrast to prior work, the spatial distribution of the illuminant colors is com-
puted from multiple, spatially aligned input images. Evaluation results on these images
and on the real-world dataset by Gijsenij et al. are promising. MIRF outperforms single-
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3.1 2.9 10.6 6.8 

2.7 6.6 8.3 4.5 

2.0 2.6 8.7 3.7 

Figure 4.4: Example for the automatic white balance (WB). From top to bottom the rows
present: original image from the camera, the WB images using the ground truth, global
grey world, Gijsenij et al. [46], and MIRF. Note that here all the images are transformed
from their original raw format to sRGB for visualization. The captions on the images
denote their estimation error.

illuminant estimators. Additionally, we show that MIRF’s joint estimation of the illu-
minant color and its spatial distribution consistently outperforms the recently proposed
method by Gijsenij et al. [46], which solves these two steps separately. In an experi-
ment with ground-truth illuminant colors, we show that also the individual tasks of color
estimation and localization perform superiorly. A combination of physics-based and sta-
tistical estimates yields competitive results.

As a future extension to this work, it is worth investigation the incorporation of top-
down semantic cues into the framework [86,98]. Recognition of common materials in the
scene such as grass, stone, and faces could further improve multi-illuminant estimation.



Chapter 5

Dataset

Datasets play an important role in many computer vision and image processing appli-
cations. Illuminant and reflectance estimation algorithms need to be validated not only
qualitatively but also quantitatively using a relatively large number of examples to prove
their performance. In this thesis, we are interested in more complex reflectance and illu-
mination situations. We found that ground-truth datasets are lacking for such scenarios.
Therefore, we present our Multi-illuminant Multi-object (MIMO) Dataset for color con-
stancy as well as our synthetic scenes dataset for intrinsic image decomposition.

5.1 Related Work

Figure 5.1 are examples for the existing image dataset for reflectance and illuminant esti-
mation methods. In the following, we present a brief review of these datasets.

Color Constancy Datasets

One of the most popular datasets in the field of color constancy is the one proposed by
Barnard et al. [6] which consists of 30 scenes captured under 11 different illuminants1.
Each scene has been captured first by placing a white reference in the center (perpendic-
ular to the illumination direction) to adjust the exposure and calculate the ground-truth.
Then 50 successive images of the scene were captured and averaged to make the final
image used in the dataset. This process is then repeated for each illuminant/scene.

To perform a more thorough study on statistics-based approaches for the problem of
color constancy Ciurea and Funt [19] have proposed a large dataset of approximately
11,000 images of various indoor and outdoor scenes using a video camera. The ground-
truth illuminant for each image is then calculated using a matte gray-ball connected to
the camera which is visible in the image and assumed to contain the illumination of the

1According to the authors, 9 images were removed due to problems.
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scene. Authors argue that even though calculating the illuminant’s standard coordinate
(e.g., CIE XYZ) would be more desirable than the camera’s RGB sensor responses, due
to the complicated task of camera calibration the camera RGB coordinate is reported for
illuminant color. In this sense, Parraga et al. [75] present a calibration for their camera in
order to accurately map the camera responses to the cone activation space of human vision
(LMS) and published their dataset for color constancy 2. To calculate the ground-truth a
similar approach is used as the one by Ciurea and Funt.

Bianco et al. [12] showed that there is a significant amount of correlation between
the images in the Ciurea and Funt data set as the images are taken from video clips.
They applied a video-based analysis to select images with less correlation and reported a
subset of 1,135 images. Gehler et al. [37] further argue that the low quality of the Ciurea
and Funt dataset make it less suitable for training and testing color constancy methods.
Therefore, they have proposed a high quality dataset consisting of 568 images from a
variety of indoor and outdoor scenes. Macbeth color checker is used in order to improve
the accuracy of the ground-truth illuminant calculation.

While these datasets provide an important resource for training and evaluation of
single-illuminant color constancy methods, so far, the problem of the more realistic multi-
illuminant scenes has not been widely targeted by the computer vision research commu-
nity. One of the main reasons is the lack of a relatively large-scale dataset with accurate
ground-truth data of local illumination. In order to provide accurate pixel-wise illuminant
chromaticity map per image for mult-illuminant scenes, having just a color reference is
not enough to produce the ground-truth. In this sense, Gijsenij et al. [46] placed gray
balls in different parts of the scene and used manual annotation and segmentation to cre-
ate illumination maps of their dataset. We on the other hand, use extra images captured
from the scene in single-illuminant condition as an additional cue to accurately calculate
the ground-truth. Chapter 4 contains details on ground-truth calculation for our multi-
illuminant scene dataset. In Section 5.2, we explain further details on the acquisition of
our dataset.

Intrinsic Image Datasets

Unlike color constancy, the intrinsic image estimation methods always required an accu-
rate pixel-wise ground truth for both shape and reflectance features. A common ground
truth calculation technique used in developing existing shape and intrinsic image estima-
tion datasets is gray paint spray. That is, first the scene is captured under all the desired
lighting conditions. Then using a matte gray paint spray, all the surfaces are covered by
a diffuse gray layer and the scene is captured again under the very same lighting con-
ditions. It is assumed that using these gray-painted scenes one does construct scene’s
shading image from which it is possible to obtain also the shape of the objects [79]

Often this task is done for scenes which consist of only one single object in order
to simplify the problem. One popular example of datasets using this technique is the

2http://www.cvc.uab.es/color calibration/Database.html
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 5.1: The rows (a) to (f) are examples of datasets: Ciurea and Funt [19], Barnard
et al. [6], Parraga et al. [75], Gehler et al. [37], Gijsenij et al. [46], and Grosse et al. [49].
The last two rows include the ground-truth images provided by the authors of the respec-
tive datasets

widely used collection of MIT by Grosse et al. [49]. Also recently Bleier et al. [14] have
proposed a dataset for local illuminant estimation.

One of the main advantages of these datasets is their relatively high accuracy and
resolution. However, there are several drawbacks regarding the method above which is
the slow and cumbersome task of constructing and capturing these images one by one.
Since an exact matching between the captured scenes and the ground truth is required,
each object should be placed exactly at the same position during the whole process of
capturing that scene which could in practice require a lot of care and repetition. In practice
these issues do highly reduce the number of images and variations in the dataset.
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Another important shortcoming of such technique is that using the matte gray paint,
capturing the ground truth information is only limited to the diffuse reflectance while es-
sential material characteristics such as specularities are omitted. Grosse et al. have used
polarizing filters to separate specular from Lambertian reflectance and provided some
specularity decomposition, while most of the objects on the MIT dataset are mainly dif-
fuse. As acknowledged by Bleier et al., gray paint reduces the captured ground truth
illumination information from the scene to direct lighting, losing crucial information such
as inter-reflections.

To overcome the shortcomings of the existing datasets in intrinsic image decomposi-
tion, and to encourage research also into more complex reflectance models, we propose
a synthetic dataset for intrinsic image decomposition which will be introduced in Sec-
tion 5.3.

Dataset Quality Lighting Scale Content Groundtruth
Barnard et al. [6] High Colored 30×11 Lab GrayBall

Ciurea & Funt [19] Medium Ambient ∼11,000 Real GrayBall
Parraga et al. [75] High Ambient 210 Real GrayBall
Gehler et al. [37] High Ambient 568 Real Macbeth
Gijsenij et al. [46] High Multi-color 59+9 Lab/Real GrayBall

MIMO (§Chapter 4 ) High Multi-color 58+20 Lab/Real Macbeth
Grosse et al. [49] High White 20×10 Lab GrayPaint
Our intrinsic DS High Multi-color 17×4 Synthetic Auto

Table 5.1: Comparing popular color constancy and intrinsic image datasets with our
datasets.

5.2 Multi-illuminant Multi-object (MIMO) Dataset

In Chapter 4, we introduced our Multi-illuminant Multi-object (MIMO) Dataset developed
for local illuminant estimation and color constancy. In this section we present more details
on the acquisition of the images and their corresponding ground truth.

5.2.1 Lab set

Figure 5.2 presents example scenes captured for this dataset. To capture the scenes we
used a booth and placed the objects, lights and the camera inside. We covered the interior
surface of the booth completely with black matte filter-like fabric which damps the lights
in order to reduce the effect of ambient light and to avoid unwanted inter-reflections. We
used two 100W lamps placed on the front left and right side of the scene to illuminate the
objects (lighting is directional from up and front toward the center of the scene). Here on,
we refer to the chromaticity of the lamps as white (in practice they are slightly reddish).
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To achieve colored lights, we used two Cokin glass filters, namely number 30 and number
22, for red and blue light respectively.

Each scene in the set is captured under 14 different lighting combinations. That is 6
single illuminant (white, red, and blue from either left or right), and 8 multi-illuminant
scenes (white with white, red, and blue; red with white and blue; and blue with red,
white and blue). During the capturing of the scenes we kept the position of the lights
and the camera completely fixed to facilitate the matching of the images for the ground-
truth computation step (an external switch is used for the camera to avoid any undesired
movement).

The scenes presented in this set typically contain both specular and diffuse objects
made of different materials (plastic and porcelain or textile and wood respectively). We
have included some scenes of almost identical porcelain coffee mugs with different colors
placed in exact same positions for future use for evaluation of recoloring methods. We
calibrate the lights for ground-truth computation using an empty scene with only a gray-
level reference board placed in the center photographed in all the 14 different lightings.
There are many clear cases of colored shadows present in this set which provides the
desired complexity of the illumination conditions in order to better evaluate the estimation
methods.

In practice we only used 6 different multi-illuminant lighting conditions in the eval-
uation of our method in Chapter 4 to assure that the chromaticities of the lights for each
scene are at least 5 degrees apart. The single-illuminant images are captured to provide
additional cues necessary for the ground-truth computation step (Section 7.1).

5.2.2 Real-world set

Capturing the real-world scenes is indeed harder for various reasons such as inevitable
motion or changes in outdoor scenarios or having much less control on the illumination
and light sources in the scene. For example, in case of the images with natural sunlight, we
have little control over the main illuminant, and we have to assume that the acquisition
process is fast enough to avoid any changes on the direction of the sun (some scenes
needed to be captured again due to variations in the clouds). Also it is almost impossible
to capture a real-world outdoor scene and be able to control or perfectly estimate the
ambient or secondary lights present in the scene at each position. For the same reasons,
using the gray paint spray technique for ground-truth computation can not be accurate.

For these reasons we captured a sum of 28 scenes, while in the end we could only
use 20 scenes for our real-world set after removing the images which were mis-aligned,
moved, etc. The set overall consists of 5 indoor scenes lit by indoor lamps and a color
projector, 3 outdoor scenes lit by yellowish sunlight and bluish skylight (ambient), and
12 indoor scenes lit by the sunlight from windows in the rooms and a projector (6 scenes)
or a lamp (6 scenes). For each scene we captured two images: one for single illuminant
and one for multi-illuminant, and also two images from exactly the same illumination
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Figure 5.2: Here we demonstrate the process of data acquisition for our multi-illuminant
scene images. The two images on the bottom right are examples of a complex scene
(e.g, specular highlights and shadows) captured under distinct illuminants (note that these
images are enhanced for visualization).

Figure 5.3: Some examples from the real-world scenes for the multi-illuminant multi-
object dataset. The scenes demonstrate complex objects and illumination conditions (e.g.,
specularities and shadows) captured under distinct illuminants. Note that here the images
are transformed from their original raw format to sRGB for visualization.
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conditions but adding a Macbeth color checker to obtain illuminant chromaticities. In
practice, only one image per scene, that is the multi-illuminant scene without the color
reference, is used for our evaluations in Chapter 4. Figure 5.3 shows some examples of
the dataset.

5.2.3 Technical Challenges

In this section we have demonstrated an example of data acquisition to show the chal-
lenges of capturing an entire dataset. As much as the need for large datasets with variety
in the context has been demonstrated in various areas of computer vision, so far, there are
not many reliable datasets are available. The reasons for that can be found in numerous
drawbacks of traditional data acquisition using cameras:

• The over all task is quite slow and cumbersome which limits the number of images
in the set. And the need of proper equipments makes data acquisition financially
costly which could be a problem for many researchers.

• The procedure for capturing the data and calculating the ground truth is often so
complicated that it limits the characteristics of the scenarios.

• Often there is not much variety in the content of the scenes. This could be a huge
disadvantage in the case of parameter training and result in over-fitting of the model.

• It is often hard to repeat or re-use the data with modifications (e.g., to obtain the
scene under different illuminants or different view-points).

Therefore, in the next section, we focus on the use of photo-realistic synthetic data to
make up for these shortcomings.

5.3 Synthetic Intrinsic Image dataset 3

Obtaining a precise ground truth for real complex scenes, such as a landscape, would be
hardly possible using the procedure described in [49]. Recently, the use of synthetic data
to train and test complex computer vision tasks has attracted growing attention due to the
increased accuracy with which 3D renderers visualize the world. In addition synthetic
data allows for easy access to the ground truth, making it possible to prevent the costly
manual labeling process. Marin et al. [69] and Vazquez et al. [100] show that a pedestrian
detector trained from virtual scenarios can obtain competitive results on real-world data.
Liebelt and Schmid [64] use synthetic data to improve multi-view object class detection.
Finally, Rodriguez et al. [83] generate synthetic license plates to train recognition system.

3The materials in this section are used for a conference submission: ”Intrinsic Image Evaluation on
Synthetic Complex Scenes” by Shida Beigpour, Marc Serra, Joost van de Weijer, Robert Benavente, Maria
Vanrell, Olivier Penacchio, and Dimitris Samaras, that is currently under revision
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We propose a synthetic dataset for intrinsic image evaluation which includes not only
single object scenes with white illumination, but also multi- object scenes and multiple
non-white illuminants with complex surrounding leading to interreflections. Multispectral
sensors have been simulated in this work in order to emulate a realistic visualization as
described in [20, 22]. The objective of this new ground truth collection is to overcome
the shortcomings of the existing dataset in intrinsic image evaluation and show an easy
way to build ground truth for reflectance, shading and illumination from synthetic data
which allows the collection of a larger and more complex set of scenes. This dataset will
be publicly available to further motivate research into more complex reflectance models.

To validate our dataset, we evaluate and compare three existing methods [9,38,87] and
show that similar results are obtained on synthetic data as for real-world data in similar
settings (one illuminant, one object). Our experiments also show that current intrinsic
image methods are limited in the presence of multiple illuminants and interreflections
usually found in complex scenes.

5.3.1 Motivation

Intrinsic image algorithms and datasets can be distinguished by their assumptions on the
underlying reflectance models. Consider the reflection model [88] which models the color
observation f c with c ∈ {R,G,B} as:

f c (x) = m (x)

∫
ω

s (λ,x) e (λ,x)ρc (λ) dλ (5.1)

where the integral is over all wavelengths λ of the visible spectrum ω. The material
reflectance is given by s (λ,x), e (λ,x) is the spectrum of the illuminant, andm is a scalar
depending on the scene geometry (viewpoint, surface normal, and illuminant direction).
The camera sensitivity is given by ρc.

We will use this basic reflection model to demonstrate the differences between existing
datasets and our dataset. In the MIT dataset [49] the illuminant is considered to be inde-
pendent of x and white, i.e. e (λ,x) = 1. This assumption is shared by most of the intrin-
sic image methods [8] [38] [87]. Recently, Barron and Malik [9] relaxed this assumption:
they allow the illuminant color to vary but only consider direct illuminantion (ignoring
interreflections). Their assumption on the illuminant is given by e (λ,x) = e (λ, n (x)),
where n (x) is the surface normal at location x. They construct a dataset by synthetically
relighting the real-world MIT dataset [9].

Here, we go one step further and create a synthetic dataset by using rendering tech-
niques from the computer graphics field. This allows us to remove the restriction other
datasets put on e (λ,x). The illuminant color and strength can change from location to
location. This allows us to consider more complex reflection phenomena such as self-
reflection and inter-reflections. To the best of our knowledge this is the first intrinsic
image dataset which considers these more complex reflection models. In the next section
we analyze rendering accuracy for such reflection phenomena.
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Note that the above reflection model assumes that the materials are Lambertian re-
flectances. Even though specular materials can be accurately rendered, we exclude them
from this dataset because most existing intrinsic image algorithms are not able to handle
non-Lambertian materials. The MIT dataset [49] applies polarizing filters to provide both
images with and without specular reflection.

5.3.2 3D Object Modeling and Photo-realism

Recent advancements in digital 3D modeling programs have enabled the users to rely on
these methods for graphical use, from digital animations and visual effects in movies to
computer aided industrial design. Rendering is the process of generating a 2D image
from a description of a 3D scene which is often done using computer programs by cal-
culating the projection of the 3D scene model over the virtual image plane. Rendering
programs are moving toward achieving more realistic results and accuracy using physics-
based models in optics. There are currently various applications available which embed
the known illumination and reflectance models [76].

In the current work, we have used Blender to model the 3D scenes. Yafaray is used as
a rendering software for its photo-realism and physically plausible results. Both of these
applications are free and open source which makes them suitable for scientific use.

5.3.3 Global Lighting for 3D scene rendering

In order to obtain more photo-realistic lighting results for 3D scene rendering, a group of
rendering algorithms have been developed which are referred to as global illumination.
These methods, in addition to taking into account the light which reaches the object sur-
face directly from a light source, direct lighting, also calculate the energy from the same
light source which is reflected by other surfaces in the scene. The latter is also known as
indirect lighting. This indirect lighting is what causes the reflections, refractions, shad-
ows, ambient lighting, and inter-reflections. Figure 5.4 presents the competitive quality
and photo-realism for synthetic scenes rendered using global illumination.

There are many popular algorithms for rendering global illumination (e.g, radiosity,
raytracing, and image-based lighting). One of the most popular methods of such is photon
mapping [51] developed by Henrik Wann Jensen. To achieve physically sound results and
photo-realism in our dataset we make use of the photon mapping method embedded in
Yafaray. Figure 5.5 shows the importance of indirect lighting in scenes. For this purpose
we compare the final renderings of our data set to the renderings which only consider di-
rect lighting (one bounce). Here the global illumination is achieved using photon mapping
which appears more realistic due to preservation of the diffuse inter-reflection.
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Figure 5.4: The above examples compare the real-world photographed scenes versus ren-
dered scenes from our dataset. The first two images on the left are examples of diffuse
inter-reflections, while the images on the right present colored shadows. Similar effect
can be observed in the synthetic images (the first and the third from the left) as in the
real-world photographs (the second and the last images from left). Note that the gamma is
added to the synthetic images for visualization.

Figure 5.5: Comparing different rendering methods: direct lighting (left) and photon
mapping (right) on an example scene from our dataset. Note that the gamma is added for
visualization.

Photon Mapping

Photon mapping consists of two steps: photon tracing and rendering. Below we briefly
review the steps of this two pass algorithm.

Photon tracing: This method can handle different types of light sources depending on
the necessity of the scene. But to reduce computational time, photon maps are generated
which optimize the emission by directing photons to the important objects in the scene
by estimating at each point of the light source, if geometry of importance is in that direc-



5.3. Synthetic Intrinsic Image dataset 73

tion. Then Russian Roulette probability is used to decide whether photons are reflected,
refracted or absorbed. Finally, as suggested by Jensen, the photon map is stored using a
kd-tree structure as it is ideal for handling non-uniform distributions of photons.

Rendering: At this step, the photon map created in the previous step is used in order
to estimate the radiance of each pixel in the final image. In this scene, each pixel is ray-
traced until the nearest intersection surface is found. Then the surface radiance leaving the
intersection point in the direction of the ray that struck it is calculated using the rendering
equation. To improve the efficiency and to decrease the costs of the rendering process,
the equation is decomposed into: direct illuminant, specular reflection, diffuse indirect
illumination (inter-reflections), caustics. The first two parts are often handled using ray
tracing since it is quite accurate for direct lighting and reflections. The caustics are cal-
culated using the caustics photon map4. And finally the diffuse indirect illumination is
calculated using global photon map. To do so, first using the nearest neighbor search on
photon map, N nearest photons are gathered. Then for each photon, the amount of flux
that photon represents is divided by the area of the sphere which contains these N pho-
tons and multiplied by the BRDF of that photon. The sum of those results for each photon
represents the total surface radiance returned by the surface intersection in the direction
of the ray that struck it.

To demonstrate the importance of indirect lighting in scenes using quantitative results
we compare the final renderings of our complex scenes to the renderings which only
consider direct illumination (rendering programs allow for this separation). We compare

the total energy in both with the ratio r =
∑
x

‖f1 (x)‖
/∑

x

‖f∞ (x)‖where f∞ is the final

rendering and f1 is the single bounce rendering. For the nine complex scenes we found
that the average r = 0.86, showing that a significant amount of the lightning in the scene
is coming from interreflections between the objects.

5.3.4 Analysis of Color Rendering Accuracy

For synthetic datasets to be useful to train and evaluate computer vision algorithms, they
should accurately model the physical reality of the real-world. Therefore, in this section,
we analyze the accuracy of color rendering based on the diagonal model as is typically
done in graphics. To prevent propagating the full multispectral data, which is computa-
tionally very expensive, rendering engines approximate Eq. 5.1 with

f̂ c =

∫
ω

s (λ)ρc (λ) dλ

∫
ω

e (λ)ρc (λ) dλ. (5.2)

4Here we do not focus on the caustic effect
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Here we removed the dependence on x, and the geometrical term m and focus on the
color content of f . In vector notation we could write this as

f̂ = s ◦ e (5.3)

where we use bold to denote vectors, and ◦ is the Hadamard product, and we replaced
s =

∫
ω

s (λ)ρc (λ) dλ and e =
∫
ω

e (λ)ρc (λ) dλ. In real scenes the light which is coming

from objects in the scene is not only caused by direct lightning of the illuminant but
part of the light is reflected from other objects in the scene. Considering both direct and
interreflection from another surface we can write:

f̂ = s1 ◦ e + s2 ◦ s1 ◦ e (5.4)

where the superscript is used to distinguish the material reflectance of different objects.
The accuracy of the approximations in Eq. 5.3 and Eq. 5.4 is dependent on the shape and
the number of sensors c considered. Typically rendering machines apply three sensors c ∈
{R,G,B}, however it is known that the rendering accuracy increases when considering
more sensors [22] [20].

To test the accuracy of f̂ c we perform a statistical analysis. We use the 1269 Munsell
color patches [1] and we compute both f c and f̂ c. For sensors ρc we use Gaussian shaped
sensors which are equally spaced over the visible spectrum. We compare the reconstruc-
tion error

ε =

∥∥∥f (x)− f̂ (x)
∥∥∥/‖f (x)‖

for the cases of three, six and nine sensors. We consider both single bounce (Eq. 5.3) and
two bounce situation (Eq. 5.4). As illuminant we have taken the standard D65 daylight
illuminant. Dark patches where discarded because the reconstruction error is unstable for
these cases.

One bounce Two bounces
sensors Mean (%) Max (%) Mean (%) Max (%)

3 0.58 2.88 1.38 23.84
6 0.19 1.25 0.55 9.06
9 0.12 0.86 0.34 3.77

Table 5.2: Reconstruction error for single and two bounce reflection for 3, 6, and 9 sen-
sors.

In Table 5.2 the results of the experiment are provided. For single bounce the three
sensor approximation which is common in graphics is acceptable and only leads to a
maximum error of 2.88%. However, if we consider interreflections the maximum error
reaches the unacceptable level of 23.84%. Based on these results we have chosen to use
a 6 sensors system to propagate the multispectral color information, resulting in a max-
imum error of 9.06%. This can be conveniently achieved by running existing rendering
software (built for 3 channel propagation) twice for three channels [22] [20]. The final
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6-D result image is projected back to a RGB image using linear regression. In the only
available intrinsic image data set for multi-illuminants [9], illuminants where introduced
synthetically by using a 3 channel approximation. Since this data set only considers direct
lightning, our analysis shows that this suffices. However, in the case of interreflections,
synthetically relighting of real-world scenes would introduce significant errors.

5.3.5 Proposed dataset

Our dataset consists of two set of images: single objects and complex scenes. In the first
set, the aim is to simulate the work on MIT dataset The second set is to our knowledge the
first set of complex scenes for intrinsic image estimation which has an accurate ground
truth, not only for the typical reflectance and shading decomposition, but also for the il-
luminant estimation. There are 8 objects in the first set which vary in complexity for
their shape and color distribution. The complex scenes on the other hand consist of vari-
ous complex objects (e.g, furniture) which result in diffuse inter-reflections and complex
shadows.

Over all, there are 9 images in the second set. All the colors of the objects present in
the scenes are taken from the Munsell colors since the multi-spectral reflectance values
for them is recorded. Figure 5.6 shows examples of ground-truth we provide with the
dataset. All the single-object and complex scenes in our dataset are rendered under 4
different illumination conditions (i.e., white light, colored light, and 2 cases of multiple
illuminants with distinct colors). This leads to a total of 32 images in the single object
set and 36 in the complex scene set. The illuminants are randomly chosen from a list of
Planckian and non-planckian lights from the Barnard dataset [7].

5.3.6 Experiments

Here we show results for three state-of-the-art methods to intrinsic image estimation on
the data set [9,38,87]. For the experiment, the available codes provided by the authors of
the tested methods have been used, and the parameters for each method have been set to
the values provided in their works where the methods were mostly trained and tested on
the MIT dataset. Moreover image size was reduced by a factor of two for the method of
Gehler et al. [38] due to the high computational cost of the method.

For each of the subsets in our dataset, namely single objects and complex scenes,
we have analyzed the three methods on three illumination conditions: white light(WL),
one non-white illuminant(1L), and two non-white illuminants(2L). Mean results on each
illumination condition have been computed. Figure 5.7, presents an example of the re-
flectance estimation results by each method for a scene under various lighting conditions.

Errors have been evaluated using the local mean squared error (LMSE) and consid-
ering the three RGB channels of the color image [49]. As reflectance images can be
recovered only up to a scale factor, we have multiplied the estimated reflectance images
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Figure 5.6: Some examples for the dataset and its ground-truth. From left to right: the
rendered scene, reflectance component, and illumination. Note that the chromaticity of
the illumination image presents the illuminant color at each pixel and its brightness is the
shading image. The images are enhanced for visualization.

by an α factor which has been fitted for each local patch to minimize the MSE. Table 5.3
and Table 5.4 summarize the results obtained for reflectance and shading respectively. As
expected, the error for all the three methods increases when the illuminant is not white.
The shading evaluation is relatively invariant to illuminant changes because it discards
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color information. The lower errors on the complex scenes are caused by large uniform
colored objects which result in low LMSE errors. Overall the method of Serra et al. [87]
obtained the best results on our data set. The expected robustness of the method of Bar-
ron and Malik [9] is not reported on this data set. This could be due to the fact that the
assumptions of direct lighting is broken in our scenes.

Methods Single Objects Complex scenes
WL 1L 2L WL 1L 2L

Barron & Malik 0.098 0.115 0.120 0.029 0.068 0.050
Gehler et al. 0.111 0.135 0.138 0.028 0.078 0.052
Serra et al. 0.073 0.079 0.085 0.032 0.045 0.038

Table 5.3: LMSE of the reflectance estimation results by three intrinsic image methods
on our dataset. For both single objects and complex scenes, results for white illumination
(WL), one illuminant (1L), and two illuminants (2L) are averaged.

Methods Single Objects Complex scenes
WL 1L 2L WL 1L 2L

Barron & Malik 0.063 0.065 0.079 0.019 0.023 0.024
Gehler et al. 0.081 0.081 0.090 0.018 0.021 0.020
Serra et al. 0.028 0.027 0.032 0.011 0.011 0.011

Table 5.4: LMSE of the shading estimation results by three intrinsic image methods on
our dataset. For both single objects and complex scenes, results for white illumination
(WL), one illuminant (1L), and two illuminants (2L) are averaged.

5.4 Conclusion

Datasets have played a crucial role as a catalyst in many computer vision fields. To
motivate more research into computer vision in more complex lighting situations, such
as multi-illuminant scenes and scenes with inter-reflections, new datasets are required. In
this chapter, we provided two such data sets.

For research in multi-illuminant estimation, we have proposed a dataset of photographed
images consisting of a set of toy scenes under control laboratory conditions and a set of
real-world indoor and outdoor images. These scenes present highly complex reflectance,
highlights, and lighting conditions such as shadows, inter-reflections and non-uniform
lighting. Along with this dataset, we provided a precise pixel-wise illumination ground-
truth data for each image.

The second dataset is provided for intrinsic image estimation in complex lighting sit-
uations. Collecting intrinsic image ground-truth data is a laborious task. The assumptions
on which the ground-truth procedures are based limit their application to simple scenes
with a single object taken in the absence of indirect lighting and inter-reflections. We in-
vestigated synthetic data for intrinsic image research since the extraction of ground truth
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Figure 5.7: An example of reflectance decomposition results for a scene from our dataset.
The image on the top row is the ground-truth reflectance. The second row is the scene
rendered under three different lighting conditions, namely: white light (WL), single col-
ored illuminant (1L), and two distinct illuminants (2L), respectively from left to right.
The rows three to five are the reflectance estimation results obtained by methods of Gehler
et al. [38], Barron and Malik [9], and Serra et al. [87] respectively for each of the rendered
images as input. Note that the images are enhanced for visualization.
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is straightforward, and it allows for scenes in more realistic situations (e.g, multiple illu-
minants and inter-reflections).
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Chapter 6

Conclusions and Future Directions

This work aims at improving the modeling of the illumination and its interaction with
object surfaces. The first part of this chapter summarizes the work. In the second part we
discuss possible directions for future work.

6.1 Conclusions

In this thesis, we have investigated various models for illumination and object reflectance
modeling. We have extended the existing reflection models to account for real-world
Multi-illuminant scenes. In Chapter 3, we have presented a framework to estimate the
chromaticity of the lights illuminating the scene using specular highlights and decompo-
sition of a color image to a set of images capturing its intrinsic characteristics (e.g. diffuse
and specular components). We have demonstrated results on challenging real-world im-
ages with complex illumination and reflectance in the presence of colored shadows and
inter-reflections. Moreover, we showed some examples for the possible applications of
our framework in order to improve automatic and semi-automatic photo-editing tasks (e.g,
photo-fusion and color transfer).

In Chapter 4, we improved illuminant estimation methods by formulating the scene’s
illumination as an energy minimization combining bottom-up color constancy methods
for global illuminant estimation into a mathematically sound formulation which embeds
both the statistical and physics-based method. Using Conditional Random Fields (CRF)
we achieved global consistency of the illuminant estimations. Using an extensive ex-
perimental evaluation we demonstrated that the proposed method addresses the intrinsic
challenges in multi-illuminant scenes, i.e. the estimation of the illuminant colors and their
spatial distribution, with superior accuracy compared to prior work. Therefore, we show
that proposed framework is able to perform high quality automatic digital white balancing
in complex scenes.

We have created two datasets which are explained in Chapter 5. Our multi-illuminant
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scene dataset captured from both laboratory controlled scenes and real-world indoor and
outdoor scenes is more general and complex than existing dataset for multi-illuminant
color constancy. This chapter further presents our synthetic scene dataset for intrinsic
image decomposition using physically sound 3D modelling and rendering programs. The
main advantage of synthetic data is that the extraction of the ground truth is straightfor-
ward. This allows us to evaluate intrinsic image algorithms in the presence of complex
lighting situations such as multiple illuminants and interreflections, which were previ-
ously absent in intrinsic image data sets.

6.2 Future Directions

The object reflectance model in Chapter 3 can be further extended to account for ambient
lighting. Also an important improvement over the current framework can be achieved
by automatic segmentation of the object from the input image to minimize the manual
user interaction. Lastly the Algorithm 1 can potentially be extended to extract any de-
sired number of illuminants using the object pixels’ color distribution given that the areas
affected by these illuminants are big enough and that the noise ratio allows for making
reliable clustering over the object color distribution.

Moreover, our multi-illuminant estimation method of Chapter 4 can strongly benefit
from incorporating top-down cues for illuminant estimation such as object recognition
and sparseness of the reflectance. Also Gamut mapping approach can easily be embedded
into the current framework as a further constraint on the illuminants. And combining
various statistical methods can improve the bottom-up local estimations. In addition, the
calculation of pairwise potentials can be improved using heuristics such as Retinex.

Furthermore, we acknowledge the necessity of expanding our datasets which are in-
troduced in Chapter 4 and Chapter 5 to include more variety of scenes and illumination
conditions. The ground-truth calculation procedure for our MIMO dataset requires fur-
ther improvements to better capture the effect of specularities and inter-reflections. Also
our synthetic dataset for intrinsic image estimation can be extended to include specular
surfaces.

Finally, we propose as our future work, to investigate material characteristics based
on their reflectance in order to perform material classification from which both science
and industry could benefit. Also removing the effect of complex illumination facilitates
other Computer Vision tasks (e.g., segmentation, and object classification). Moreover, the
illumination and reflectance modeling could be applied to image forensics approaches.
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Appendix

7.1 Further Results

Here we show further examples of results achieved using the MIDR method of Chapter 3.

Figure 7.1: From left to right: Original image, recolored object, changing the primary
illuminant, removing and recoloring the secondary illuminant.

Figure 7.3 is a visualization of the two-illuminant MIDR decomposition, recoloring
and photo-fusion respectively.

f = m1
bc L1 +m1

sl
1 +m2

bc L2. (7.1)
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Figure 7.2: Examples of object recoloring while preserving the bluish ambient light and
shadows.

Figure 7.3: The first row is an example of image decomposition using MIDR. In the mid-
dle, the object has been recolored automatically simply by changing the object color RGB
value while the inter-reflections have been preserved. The bottom row demonstrates an
interesting further application of MIDR in improving the results of photo-fusion in which
after replacing an object in the scene with another, the inter-reflections can be modified to
generate more realistic results (Note that the general problem of photo-fusion can be more
complex than this).

7.2 The Algorithm Convergence to Grey-world

In this appendix we prove that the actual choice for the unary potential as given by Eq. 4.8
leads to the same estimate as standard grey-world algorithm in the case of a large θp, which
forces the method to find a single illuminant estimate for all patches.

If the energy cost of label changes is chosen large enough (large θp), no label changes
will be allowed between the patches. As a consequence all patches will have the illumi-
nant estimate, which will essentially be determined by the unary potential. The solution
will be that illuminant which yields, summed over all patches, the lowest energy. Con-
sider x the illuminant choice for all patches (we drop the subscript on x since it is equal
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for all patches), the energy can be written as

E(x|F) =
∑
i∈V

φ(x|Fi) =
∑
i

∥∥∥∑
j∈pi

f j
∥∥∥(1− ii

Tx
)

(7.2)

where we used cos (ϕ (ii,x)) = iTi x. Filling in Eq.4.5 for ii we find that

E(x|F) =
∑
i

∥∥∥∑
j∈pi

f j
∥∥∥−∑

i

(∑
j∈pi

f j
)T

x , (7.3)

where only the second part depends on x. Since we want to compute argminxE (x|F),
this is equal to maximizing the second part of the equation

argmax
x

∑
i

(∑
j∈pi

f j
)T

x = argmax
x

(∑
i

∑
j∈pi

f j
)T

x , (7.4)

since the inner product is distributive over vector addition. From this it follows that

x∗ ∝
∑
i

∑
j∈pi

f j (7.5)

which is the solution of the grey-world for the whole image. In conclusion, we have
seen that by choosing the particular unary potential of Eq. 4.8, standard grey-world can
be written as a energy minimization problem. Hence, when θp is chosen large enough,
minimizing Eq. 4.4 leads to the same result as the grey-world algorithm. It should be
noted, that this is only true when the solution of the grey-world algorithm is in the illu-
minant label set L. In practice this can be easily obtained by choosing the solution of the
grey-world as one of the labels.

A similar derivation could be given to prove that minimizing Eq. 4.4 with the unary
potential of Eq. 4.10 yields the grey-edge algorithm. Enforcing exactly one label leads to
the same answer as the single illuminant in case p = 1 in Eq. 4.9.

7.3 Estimation of the Two-illuminant Ground Truth

We add details on Eq. 4.24. Let analogously to Eq. 4.24 fa,g and fb,g denote aligned
pixels from the green channels of two images, exposed to illuminant a and to illuminant
b, respectively. We seek the influence of a and b in fab,g where both illuminants are
additive, i.e. fab,g = fa,g + fb,g. Intuitively, if a pixel is brighter in fa,g than in fb,g,
then the influence of a is stronger in fab,g. The brightness difference comes from a) the
intensity of the illuminant and b) from different angles between the light source and the
surface normal (for instance, the laboratory lights are located left and right of the scene).
Thus, we seek per pixel a weighting factor w, such that

iab = w · a + (1− w) · b , (7.6)
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i.e. the illumination chromaticity iab,g in this pixel is a weighted sum of the chromaticities
of the two illuminants.

To obtain w, we first compute illumination-normalized versions f̂a,g, f̂b,g using the
von Kries assumption. Thus, fa,g and fb,g are divided by the green chromaticities of a

and b, respectively. w is then obtained by computing the relative contribution of f̂a,g with
respect to f̂b,g,

w =
f̂a,g

f̂a,g + f̂b,g

. (7.7)

Assuming Lambertian reflectance and sharpened sensors, f̂a,g = ωakaρg, where ωa and ka

denote scaling factors due to geometry and the intensity of the light source, respectively.
ρg denotes the intensity of the pixel’s surface albedo. Note that the illuminant color is
omitted, as it has been neutralized. Expanding Eq. 7.7, the ratio of the pixel under both
illuminant corresponds to the ratio of their scaling factors ωa and ka,

w =
ωakaρg

(ωbkb + ωaka)ρg
=

ωaka

ωbkb + ωaka

, (7.8)

as albedo and neutral illuminant are identical in f̂a,g and f̂b,g. This leads directly to the
formulation in Eq. 4.24.

In practice, we clip the weight w if one of the illuminants is tB times brighter than the
other, i.e.

w =


1 if f̂a,g/f̂b,g > tB
0 if f̂b,g/f̂a,g > tB

w̃f̂a,g/f̂b,g otherwise
, (7.9)

where w̃ normalizes the range of values between 0 and 1. For our dataset, we empirically
determined tB = 40 as a reasonable threshold.

In real-world images, the assumption of sharpened sensors and Lambertian reflectance
are typically violated. We alleviate this issue with two “engineering decisions”. First, we
use only the green channel, as an approximation to a sharp sensor. Second, some pixels
contain specular reflectance, i.e. are not fully Lambertian. In such cases, the intensity of
the specularity often exceeds the clipping range, which assigns the respective pixel fully
to the specular illuminant (which agrees with the neutral interface assumption [88]). Fi-
nally, note that interreflections are in general not well modeled by this approach. Despite
these shortcomings, we manually investigated all scenes, and concluded that the cases
that violate our assumptions are rare or do not considerably influence the result. Thus,
the proposed approach is a economic, feasible way to obtain pixelwise multi-illuminant
ground truth on real-world scenes.
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