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Color constancy is usually measured by achromatic
setting, asymmetric matching, or color naming
paradigms, whose results are interpreted in terms of
indexes and models that arguably do not capture the full
complexity of the phenomenon. Here we propose a new
paradigm, chromatic setting, which allows a more
comprehensive characterization of color constancy
through the measurement of multiple points in color
space under immersive adaptation. We demonstrated its
feasibility by assessing the consistency of subjects’
responses over time. The paradigm was applied to two-
dimensional (2-D) Mondrian stimuli under three
different illuminants, and the results were used to fit a
set of linear color constancy models. The use of multiple
colors improved the precision of more complex linear
models compared to the popular diagonal model
computed from gray. Our results show that a diagonal
plus translation matrix that models mechanisms other
than cone gain might be best suited to explain the
phenomenon. Additionally, we calculated a number of
color constancy indices for several points in color space,
and our results suggest that interrelations among colors
are not as uniform as previously believed. To account for
this variability, we developed a new structural color
constancy index that takes into account the magnitude
and orientation of the chromatic shift in addition to the
interrelations among colors and memory effects.

Introduction

Color constancy is a perceptual phenomenon that
keeps the color of objects relatively stable under
varying illumination conditions (Foster, 2011; Land,
1964; Smithson, 2005). Since a full recovery of the
spectral properties of either the illumination or objects

by the trichromatic eye does not have a unique
solution, several possible strategies have been proposed
to make color constancy possible. These include
restrictions on the number and dimensionality of the
spectral reflectances and illuminants available (Malo-
ney & Wandell, 1986), normalizations with respect to
the illumination (Brainard & Wandell, 1986), assump-
tions about the brightest visible object (Land &
McCann, 1971) or the average color of the world
(Buchsbaum, 1980), higher order statistical properties
of the environment and other regularities (Golz &
MacLeod, 2002; Hordley, 2006), or a combination of
these. However, none of the explanations proposed so
far provides a complete representation of how a visual
scene is perceived under an illumination shift in
naturalistic, complex, unconstrained conditions. For
instance, the degree of color constancy may depend on
internal criteria derived from different judgments of the
scene, as demonstrated by the hue saturation versus
paper matches of Arend and Reeves (1986). Other
confounds may depend on the ability of subjects to
attribute changes in the scene to either changes in the
spectral composition of the illuminant or the reflecting
properties of objects in that scene (Foster & Nasci-
mento, 1994). High level visual memory may also play
an important role in judgments of surface color, as
demonstrated by Hansen, Olkkonen, Walter, and
Gegenfurtner (2006).

The degree and quality of the color constancy
experienced by observers is usually measured by a
variety of psychophysical techniques. A typical exper-
iment compares the colors an observer perceives under
a given state of illuminant adaptation to the colors
perceived under another state, and the differences are
then interpreted using models and indices (Brainard,
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Brunt, & Speigle, 1997; Foster, 2011). Models attempt
to predict the color appearance of other nonmeasured
colors while indices quantify the degree of color
constancy achieved. The most popular color constancy
paradigms are achromatic setting, asymmetric color
matching, and color naming (Foster, 2011; Smithson,
2005). Achromatic setting measures the perceptual
stability of the achromatic locus under a change of
adaptation by asking subjects to modify a stimulus
until it appears ‘‘achromatic.’’ It has been pointed out
that this is a local measurement that may or may not be
influenced by manipulations of other regions of the
scene and also that one measure may not be enough to
estimate the stability of perceived colors away from the
neutral point (Delahunt & Brainard, 2004; Foster,
2003, 2011; Schultz, Doerschner, & Maloney, 2006).
Asymmetric color matching (Arend & Reeves, 1986;
Wyszecki & Stiles, 1982) compares binocular or
dichoptical stimuli under different illuminants, pre-
sented either simultaneously or successively. Subjects
adjust a patch under one illumination to match another
under a different illumination. This method requires
that the state of adaptation follows closely the change
of illumination, a strong assumption especially in the
case of alternate viewing paradigms (Foster, 2011).
Color naming paradigms rely on the subjects’ internal
color categories by asking them to classify samples
under different illuminants. It has been argued that
color naming provides a more direct method for
measuring color constancy (Foster, 2011) on the
grounds that it is less sensitive to the instructions given
to subjects (Arend & Reeves, 1986; Troost & de Weert,
1991). The main setback of the last method is the large
number of discernible colors (more than two million),
much larger than the number of possible names
(Linhares, Pinto, & Nascimento, 2008; Pointer &
Attridge, 1998), resulting in limited accuracy (Foster,
2011). Variants include determining unique hues and
estimating the degree of color constancy from the
response categories of large numbers of samples and
the position of color boundaries (Chichilnisky &
Wandell, 1999; Smithson & Zaidi, 2004) under different
states of adaptation (Hansen, Walter, & Gegenfurtner,
2007; Kulikowski & Vaitkevicius, 1997; Olkkonen,
Hansen, & Gegenfurtner, 2009; Olkkonen, Witzel,
Hansen, & Gegenfurtner, 2010).

Color constancy from multiple points in color
space

In addition to using internal gray as a reference,
some researchers have included multiple color refer-
ences to study color constancy (Hansen et al., 2007;
Kulikowski & Vaitkevicius, 1997; Olkkonen et al.,
2009; Olkkonen et al., 2010) and to determine

properties such as the boundaries between color
categories (Benavente, Parraga, & Vanrell, 2009;
Smithson & Zaidi, 2004). Some of these studies have
measured directly the color appearance of several
colored patches under different illuminants (Kulikow-
ski & Vaitkevicius, 1997; Speigle & Brainard, 1997),
while others have used color naming to derive a
conclusion about the categorical structure of color
space (Hansen et al., 2007; Olkkonen et al., 2009;
Olkkonen et al., 2010; Troost & de Weert, 1991). In the
direct measures, immediate color constancy seems to
hold best for hues corresponding to ‘‘typical’’ colors as
compared with the adjacent hues; however, this effect
may be residual (Kulikowski & Vaitkevicius, 1997).
Through the use of color naming techniques and a large
set of colored samples, Hansen et al. (2007) and
Olkkonen and colleagues (Olkkonen et al., 2009;
Olkkonen et al., 2010) achieved different levels of color
constancy according to the degree of information
provided. They modeled the transformations of the
perceptual color space under different illuminations by
computing the boundaries of the color categories
(Hansen et al., 2007; Olkkonen et al., 2009) and
computing the color constancy indices of the categor-
ical prototypes (Olkkonen et al., 2010). Their conclu-
sions were that the categorical structure of color space
has a high degree of robustness under changes of
illumination, which could be explained by linear
models. However, Hansen et al. (2007) reported small
rotations away from the illumination color.

In this work we explore whether keeping adaptation
constant throughout a single session and characterizing
colors other than gray improves the accuracy of color
constancy modeling and if that is so, how to use this
knowledge to further our understanding of the
phenomenon. With this in mind, we have developed a
color constancy paradigm that tries to minimize the
weaknesses while keeping the strongest points of
previous paradigms. In our method, the measurements
are done under a permanent state of adaptation, thus
avoiding potential illuminant-switching issues. Our
paradigm can be seen as an extension of the achromatic
setting paradigm, which, instead of using only the
internal ‘‘gray’’ reference, uses several categorical
colors, exploiting the ability of subjects to consistently
replicate focal colors over time. Focal colors (Berlin &
Kay, 1969/1991; Boynton & Olson, 1987) are by
definition the most representative colors of each
naming category, and there is strong evidence of the
effect of language (Heider, 1972; Kay et al., 2009) and
memory (Hansen et al., 2006; Ling & Hurlbert, 2008;
Nemes, McKeefry, & Parry, 2010) on their perceptual
categorization. Although the ability of subjects to
match a memorized color decreases in general with
increasing interstimulus intervals (Nemes et al., 2010),
there is some evidence that focal colors can be
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remembered more accurately than other colors (Heider,
1972). Other effects, such as a tendency to remember
more saturated or brighter/dimmer colors have been
linked to color constancy (Jin & Shevell, 1996; Ling &
Hurlbert, 2008). Since our paradigm relies strongly on
color memory ability, we studied its validity by testing
the stability of these internal references along the
experiment. To test whether our paradigm provides a
more comprehensive measure of the color constancy
phenomenon, we applied linear models to study its
behavior, e.g., to what extent these models are capable
of absorbing the growing data complexity that results
from the addition of extra measurements. Finally, we
developed a new color constancy index that arguably
captures the intrinsic complexity of the phenomenon in
a single value, while still in agreement with the previous
color constancy literature.

Methods

Overview

We present a new psychophysical paradigm to
determine color constancy under immersive illumina-
tion that measures the perception of nine colors under
different states of adaptation by using CRT monitor
based stimuli. The stimuli were combinations of three
different 2-D Mondrians and three different illumi-
nants. The subject’s task was to select and then
reproduce a particular color from memory. In order to
rule out memory failings the experimental procedure
included a series of repeatability tests.

The chromatic setting paradigm

Our paradigm consists of two steps as illustrated by
Figure 1. In the first step, subjects were asked to select
colors that best represented basic color terms within a
limited region of the color space (Bounding Cylinder,
represented by a red circle). These were gray, green,
blue, purple, pink, red, brown, orange, and yellow
(Berlin & Kay, 1991). The squares within the red circle
in Figure 1 symbolize the colors selected during this
first step, which we called reference session. We termed
these colors Selected Representatives (SRs). In the
second step, which we called regular session, the same
subjects were asked to reproduce these SRs under
different conditions of background and illumination.
The squares outside the red circle in Figure 1
correspond to these colors, and the arrow represents
the change in adaptation state. Since the new paradigm
can be seen as an extension of the achromatic setting

paradigm to multiple colors, we named it Chromatic
Setting.

The red circle in Figure 1 corresponds to the
projection of a cylinder in the a*b* plane. This cylinder
was introduced to limit subjects choices, thus avoiding
highly saturated colors that fall outside the CRT gamut
when ‘‘illuminated.’’ Details on the Bounding Cylinder
implementation can be found below.

Experimental setup

All sessions were conducted inside a dark room, with
all walls lined in black. The experiment was programmed
in Matlab and the stimuli were displayed on a CRT
Mitsubishi Diamond Pro 2045SU monitor (Mitsubishi
Group, Tokyo, Japan) at 100Hz, driven by a ViSaGe
graphics card (Cambridge Research Systems Ltd., Ro-
chester, UK) with 12 bits color resolution per channel.
The CRT screen measured 389 mm in height by 292 mm
in width subtending approximately 228 · 178 and was
the only light source in the room. Its resolution was 1024
· 768 pixels. Viewing was binocular and unrestrained.
The monitor was calibrated regularly using a Minolta
ColorCal colorimeter (Konica Minolta, Tokyo, Japan)
and CRS software. We used the COLORLAB (Malo &
Luque, 2002) toolbox to get the color space conversions
needed. Subjects modified the test stimuli by navigating
the CIELab color space using six different buttons, two
for each color space dimension on a commercial
gamepad. The reference white point was D65, luminance
¼ 100 cd/m2.

Figure 1. Schematics of the chromatic setting paradigm in the

a*b* plane of CIELab color space. The black broken lines

represent the boundary of the CRT gamut. The squares inside

the red circle represent the colors selected in the reference

session. The squares outside the red circle represent the

colors reproduced once adapted to the new illuminant in a

regular session. The arrow represents the chromatic shift

induced by the illumination.
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Subjects

Ten subjects, six male and four female, took part in
our experiments. They were between 20 and 44 years
old, and their color vision was normal as tested by the
Ishihara color vision test (Ishihara, 1972) and the
Farnsworth-Munsell D15 hue test (Farnsworth, 1957).
All had self-reported normal or corrected-to-normal
visual acuity. Three of the subjects were the authors.
The rest were naive to the purposes of the experiment,
and of these, three were paid.

Stimuli

Our basic stimulus consisted of a Mondrian back-
ground pattern, i.e., a set of randomly overlaid colored
rectangles, distributed across the screen. The average
rectangle size was 50 · 50 pixels. There were three
types of backgrounds:

Type 0

It was built from seven intensity levels of the same
D65 chromaticity. They were equally spaced between
40 and 70 Lab lightness units and their luminances in
cd/m2 were: 11.25, 14.54, 18.42, 22.93, 28.12, 34.05 and
40.75. Its mean was 22.66 cd/m2.

Type I

It was built from the SRs chosen by each subject in
reference sessions (see details below). There were eight
colors in total: green, blue, purple, pink, red, brown,
orange, and yellow. Their averaged luminance range was
between 12.77 and 39.29 cd/m2, mean¼ 25.11 cd/m2.

Type II

It was built from eight hues halfway between those
of Type I, with similar saturation and lightness: blue-
purple, purple-pink, purple-red, red-orange, orange-
yellow, orange-brown, yellow-green, and green-blue.
Their averaged luminance range was between 16.87 and
35.54 cd/m2, mean ¼ 24.35 cd/m2.

The number and sizes of rectangles were manipulated
so that the pixel average chromaticity of all background
types prior to illumination was that of D65. Background
Types I and II did not contain achromatic D65
rectangles to avoid giving the observer cues about the
illuminant (Foster, 2011). Unique randomized Mondri-
ans were created for each experimental trial: No
observer saw the same Mondrian twice. To illuminate
the Mondrian pattern, we first assigned to each rectangle
a spectral reflectance function with the same XYZ
tristimulus values as the desired colors. These reflectance
functions were obtained by interpolating linearly be-

tween real spectral reflectances from a large set of
Munsell chips assuming a Lambertian reflectance
model—see COLORLAB (Malo & Luque, 2002) for
implementation details. Illumination was simulated by
performing the spectral product of each rectangle’s
reflectance by one of three illuminants (D65, greenish
and yellowish), whose CIE xy chromaticities are shown
in Table 1. The luminance range in cd/m2 for the
illuminated stimuli was between 11.25 and 40.74 for the
D65 illuminant; between 11.24 and 40.73 for the
greenish illuminant, and between 11.20 and 40.56 for the
yellowish illuminant. The mean values in cd/m2 were
24.04, 23.7, and 24.37, respectively.

Procedure

The experiment consisted of sixteen sessions divided
in three groups: reference, regular, and repeatability
tests. Figure 2 shows the time sequence of the
experiment. First there was a training period followed
by the reference session, after which the main body of
the experiment started. It consisted of nine regular
sessions and three interleaved repeatability tests (oc-
curring at the beginning, halfway, and at the end of the
regular sessions) whose aim was to track variations in
subject’s responses. Subjects completed all experiments
in less than three weeks, and no more than two sessions
per day were allowed. Details of the different sessions
were as follows:

Reference session

It consisted of a single session with Type 0
background and D65 illumination, and it started just
after the training was completed. Subjects were
instructed to select the most representative colors for
each of the eight basic chromatic categories. The choice
of available colors was constrained by the Bounding
Cylinder (see squares within the red circle in Figure 1).

Regular sessions

They consisted of nine sessions combining the three
illuminants and three background types described
before. Each regular session followed a similar protocol
as the reference session, except that subjects were
instructed to reproduce the same SRs they had selected

Illuminant x y

D65 0.312 0.329

Greenish 0.296 0.453

Yellowish 0.453 0.434

Table 1. CIE xy chromaticity of the illuminants.

Journal of Vision (2013) 13(4):3, 1–26 Roca-Vila, Parraga, & Vanrell 4



in the reference session without any constraints (no
Bounding Cylinder).

Repeatability test

It consisted of three groups of two sessions each. In
the first session, subjects were asked to reproduce the
SR chosen before, this time under Type 0 background,
D65 illuminant, and within the Bounding Cylinder.
This is equivalent to a reference session where subjects
reproduce instead of selecting the colors. The second
session was a regular session with Type II background
and greenish illumination. This choice was arbitrary:
We decided to include only one illumination in order to
avoid extending the experiment unnecessarily, while
keeping the same experimental complexity as in the
regular sessions.

Training

Training occurred at the very beginning and
consisted of repeating two consecutive sessions: a
reference session followed by a regular session both
with Type 0 background and D65 illuminant (i.e., in
the second session there was no Bounding Cylinder).
The objective of this was for subjects to understand the
different instructions in both cases. Pilot sessions with
the authors as subjects showed that in regular sessions
it was possible to reach a precision of 5 DE* at

reproducing the same colors after about two visits to
our lab (four sessions), and this did not improve
significantly afterwards. We used this value as a
criterion to determine the end of training.

Panel A of Figure 2 shows the common schematics
of the reference and regular experimental sessions.
Each session started with a 120-s adaptation to a
uniform D65 screen (luminance equal to 30 cd/m2)
followed by 180 s of adaptation to a Mondrian under
the same simulated illumination to be used later in
session. After that, subjects were prompted auditorily
and visually (by a word written in black at the bottom
of the screen) to the color category requested, and they
manipulated the gamepad to either select or reproduce
the colors according to their instructions. Each trial
ended by pressing a ‘‘next trial’’ button on the gamepad
which followed re-adaptation to a geometrically
randomized version of the original Mondrian and
illuminant for 10 s before proceeding to the next trial.
There were 44 trials: In the first four, subjects were
asked to produce ‘‘gray,’’ and in the following, they
were asked to produce the other eight colors five times
each in random order. Test patches occurred simulta-
neously at multiple random locations in the Mondrian
and were adjusted by the observer with no time
constraints. They were spatially distributed in a
random manner in every trial with the aim of forcing
subjects to average test locations, thus reducing local
chromatic induction effects (Otazu, Parraga, & Vanrell,

Figure 2. Temporal sequence of the experiment. Panel A shows the common schematics for a reference or regular session.

Panel B illustrates the setup of the whole experiment. Start-up sessions consisted of both training and reference sessions. In a

reference session, subjects selected their most representative color for each category. Regular sessions were similar, except that

subjects had to reproduce the same colors they had chosen in the reference session. Repeatability tests were designed to assess

subject ability to reproduce the colors selected in the reference session.

Journal of Vision (2013) 13(4):3, 1–26 Roca-Vila, Parraga, & Vanrell 5



2010; Shevell & Wei, 2000). The number of test patches
was determined according to the following constraints:
(a) the total area occupied by the test patches was
between 4% and 7% of the display and (b) the pixel
average chromaticity of the screen prior to illumination
was equal to D65. This resulted in different number
and sizes for the test patches in backgrounds Type 0
(where the pixel average was already neutral) and Type
I and II backgrounds. As a consequence, the number of
test patches followed a normal distribution around 25
(2.4 SD) for the Type 0 backgrounds and 4.1 (0.75 SD)
for the Type I and II backgrounds.

In the cases where ‘‘gray’’ was requested, we
randomized the chromaticity of the initial test patches
around the expected value to avoid influencing the
subject’s response—see Brainard’s basic starting rule
(Brainard, 1998). In all other cases, the starting value of
the test patches was randomly distributed around each
subject’s selected ‘‘gray.’’ To obtain a single measure of
a SR color, we averaged its individual trials adjust-
ments. Each trial lasted approximately 30 s and each
session approximately 25 min.

Bounding Cylinder

In the reference sessions, the palette of possible
colors was limited in saturation and lightness by a
cylinder whose main axis was the lightness dimension

of CIELab (L* between 30 and 70 and radius equal to
22 DE*). The purpose of the cylinder was strictly
technical as illustrated in Figure 1: We wanted subjects
to find reasonably representative samples while still
allowing these colors to be ‘‘illuminated’’ later without
exceeding the CRT-monitor gamut. This limitation and
the shape of the monitor’s gamut in CIELab also
determined our choice of illuminants. The value of 22
DE* for the radius was chosen after our own
(unpublished) measurements indicated that colors
closer than 12 DE* to the achromatic locus were usually
categorized as ‘‘gray.’’ Subjects naturally tended
towards choosing saturated colors, and to stop them
from using the borders of the cylinder as a reference,
i.e., to increase saturation until hitting the cylinder
limit, the experimental program ‘‘bounced back’’ the
stimulus inside the cylinder by a small random amount
once the boundary was reached. The Bounding
Cylinder was not present in regular sessions.

Results

Selected representatives and their repeatability

Figure 3 shows the CIELab location of selected
representatives chosen by all subjects (D65 was used as

Figure 3. CIELab locations of the selected representatives adjusted in the reference sessions by all 10 subjects. Square markers in both

panels indicate the average location (five trials) of each color category and subject. Color categories are labeled and color-coded

with their representative colors (R-red; G-green; B-blue; Y-yellow; N-gray; W-white; K-black; P-pink; O-orange; Pr-purple; Br-

Brown). Panel A shows the projection of the data in hue and lightness. Panel B shows the same data projected on the a*b* plane.

The red circle shows the boundary constraints imposed by the method in the reference sessions.
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a reference white point). Panel A shows the data
projection into the lateral surface of the Bounding
Cylinder and panel B shows their projection into the
a*b* plane. The limits of the Bounding Cylinder are
shown as a red circle in panel B. The colored areas
highlight the inter-subject variability, which is largest in
the lightness dimension (Foster, 2011; Webster & Kay,
2007), particularly for green, blue and purple. From the
two panels it can be inferred that there is no volumetric
overlap among the different colored areas, i.e., subjects
were consistent in selecting colors within categories.
The figure also shows good agreement between the hue
locations of our categories and the hues of Boynton
and Olson’s (1987) focals , plotted beyond the cylinder
boundaries in panel B.

Along the experiment we kept track of the accuracy
of responses over time by means of the repeatability
tests as detailed in the Methods section and Figure 2B.
These were conducted regularly at approximately three-
day intervals and included a reference session where
observers were asked to reproduce the original SR
colors. Plots in Figure 4 were arranged in rows and
columns. Columns correspond to two typical subjects
(XO and AB) and the most inconsistent subject (LC)
over time. Rows correspond to measurements taken
over three-day intervals. The first row corresponds to
the chromatic settings of the reference sessions and the
others (rows B, C, and D) correspond to the
repeatability tests in temporal sequence.

To find out whether all observers could reproduce
the colors from memory within a reasonable JND
range we applied a one-way ANOVA to each category
across different days in each CIELab dimension and
computed DE* distances among the means. To obtain
information about which pairs of means are signifi-
cantly different, and which are not, we applied a
multiple comparison procedure: the Tukey–Kramer
method (Hochberg & Tamhane, 1987), which returns a
set of pairwise comparison results. For example, to
assess the repeatability of subject’s XO ‘‘red’’ settings
we considered data from the first column (rows B, C,
and D) in Figure 4. These consist of three groups of five
points each in the three CIELab dimensions. We
applied our tests to each dimension separately,
obtaining the values of F(2, 12)¼ 2.25 with p¼ 0.15 for
a*, F(2, 12)¼ 0.77 with p¼ 0.48 for b*, and F(2, 12)¼
18.8 with p¼ 0.0002 for L*. After applying the Tukey–
Kramer post-hoc comparison we obtained three sets
(one for each dimension) of values showing whether the
‘‘red’’ measures in panels B, C, and D are significantly
different from each other. To assess whether ‘‘red’’ was
well remembered we computed in all CIELab dimen-
sions, the percentage of cases that were significantly
different (in the example, observer XO could remember
‘‘red’’ in 78% of the cases). We repeated this procedure
for all color categories, obtaining an average of 15%

significantly different measures for all subjects. There
were 17% significantly different measurements for red,
green, and orange, and less than 16% significantly
different measurements for the other colors. The mean
distance among chromatic settings within the same
category was 1.79 DE* for all observers and categories
considered (see Table 2 below).

Some subjects complained that red and/or orange
selections were not saturated enough to be called
‘‘representatives.’’ Crucially, this did not seem to impair
their capacity to remember the same color throughout
the rest of the experiment even for close categories such
as brown and pink.

Repeatability tests also contained a regular session
with Type II background and greenish illuminant.
Figure 5 shows a summary of these results. Each panel
corresponds to the same observer as before (XO, AB,
and LC), and each square marker corresponds to a
measurement taken over three-day intervals. Notice the
data shift corresponding to the change of illuminant.
We applied the same approach as before and found
that the means of the results populations were different
in 27% of the cases and the mean distance among
chromatic settings within the same category was 4.21
DE* (see Table 2). This difference is likely to be due to
the absence of the Bounding Cylinder, which increased
uncertainty in the saturation dimension.

Although the repeatability tests show that subjects
can reproduce the same SR colors, we conducted
another experiment to test longer term color memory.
These results, which are consistent with Figure 5, are
detailed in Appendix A.

Chromatic settings under different illuminants

Figure 6 shows the averaged chromatic settings in
CIELab obtained during regular sessions for all
subjects, discriminated by backgrounds and separated
in panels according to the illuminant. Over the regular
sessions, our 10 subjects adjusted five times (four for
gray) each of the nine basic colors for each of the nine
different stimuli, totaling 3,960 adjustments. Only 1.4%
of these adjustments were closer than five CIELab DE*
units from the CRT monitor gamut boundary, thus
indicating that subjects did not use this boundary as a
cue to find their SR colors.

As before, we plotted these results from different
illuminations under the same D65 reference white point
in order to highlight the amount of illumination shift,
hence the displacement of the data in the plots. Figure 6
shows a tendency for subjects to choose more saturated
colors in the presence of colored backgrounds than in
the presence of achromatic backgrounds, i.e., squares
are closer to the achromatic locus. This is true for all
colors studied except for green, yellow, and orange. A
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Figure 4. Chromatic settings from the reference session and the repeatability sessions. Row A shows the selected representatives

chosen by three subjects in the reference session. Rows B, C, and D show the corresponding settings for the three subsequent

repeatability tests. Square markers represent the average of individual trials (small dots joined by lines) and the large red circle

corresponds to the Bounding Cylinder in a*b* chromaticity plane.
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similar outcome was reported by Brown and McLeod
(1997) in their comparison between the effects of low-
contrast and high-contrast multicolored surrounds.
From the same figure we conclude that the type of
background did not have a strong influence in the
chromatic settings. However, since Types I and II
backgrounds were customized for each subject ac-
cording to their SR, the generalization may be masking
individual effects.

Figure 7 shows a set of typical result plots, arranged
in columns and rows. Each of the columns corresponds
to a different illuminant and the rows to four exemplary
subjects, all measured using Type II backgrounds. Inside
the plots, each colored square correspond to the average
of five trials (four for gray), which are shown as smaller
points joined by lines. To quantify the amount of
variability (d) within each group of five trials we
computed the average CIELab DE* distance between
each SR trial and the mean SR. As a white point for our
calculations we used the corresponding chromaticity of
each illuminant (see Table 1) at 100 cd/m2. Since there
were differences in the dispersion of data around the

mean depending on each subject and color category, we
summarized d in Table 3 where each value corresponds
to the average variability over illuminant-background
combinations. The average d value was 2.09 DE* (1 SD)
for the reference sessions and 4.60 DE* (2.06 SD) for
regular sessions. The difference between these values is
likely to result from the Bounding Cylinder. According
to our estimations, the precision of our method is
consistent with that of achromatic setting studies
(Brainard, 1998), where accuracies between 4 and 5 DE*
are common.

The last row of Table 3 shows the mean variability d
for each color category. Some color categories such as
red (mean¼ 4.03, 1.25 SD) and gray (mean¼ 4.05, 1.49
SD) have in average a smaller d value than others, e.g.,
purple (mean ¼ 5.29, 1.15 SD) and orange (mean¼
5.02, 1.22 SD). These tendencies are similar across
background types. However, different illuminants
arguably influenced the d value of our measures: D65
illuminant has the lowest d value (mean¼ 3.83, 1.52
SD), followed by greenish (mean¼ 4.81, 2.08 SD), and
yellowish (mean ¼ 5.16, 2.27 SD) illuminants.

Red Green Blue Yellow Neutral Purple Pink Orange Brown Mean

First session (D65) 2.04 1.82 1.64 1.54 — 1.39 2.29 1.96 1.66 1.79

Second session (Greenish) 4.74 3.82 3.26 4.72 4.89 4.21 4.86 3.33 4.01 4.21

Table 2. DE* distance among chromatic settings obtained during the repeatability test sessions. Notes: Values were obtained by
averaging the distances between each chromatic settings and their mean. The first line corresponds to measures obtained during the
first session of the repeatability test (which included a ‘‘Bounding Cylinder’’ and D65 illuminant), and the second line corresponds to
measures obtained during the second sessions, under greenish illuminant and without a bounding cylinder. Results are discriminated
by color category, and the last column shows the means.

Figure 5. Chromatic settings for repeatability sessions. Results include settings for three subjects, Type II background, greenish

illuminant, and no Bounding Cylinder. Each point represents the average of five trials (four for gray), and it was produced in

different days over the experiment lifespan. Error bars show the standard deviation. Panels A and B correspond to typical subjects

and C shows the subject with the largest variability. Notice the shift of all points towards green, corresponding to the greenish

illuminant. We chose D65 as a reference white point to highlight the effects of the illuminant for illustrative purposes. Again, for

clarity’s sake, lightness information is not shown.
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We recorded the time subjects took to complete each
trial. The average was 19.5 s (5.7 SD) for the reference
sessions and 20.7 s (6.2 SD) for the regular sessions.
Gray took the longest to adjust (mean¼ 25.1, 7.6 SD),
followed by brown (mean¼22.1, 5.6 SD), which in turn
took longer than blue (mean ¼ 18.6, 5.7 SD), purple
(mean¼ 18.7, 4.5 SD), and pink (mean¼ 17.9, 4.7 SD).
Red (mean¼21.1, 7.1 SD) and yellow (mean¼20.7, 6.2
SD) took longer time than pink, which was the fastest
to adjust.

Color constancy indices

We quantified the extent of color constancy achieved
by our subjects through three color constancy indices:
the Constancy Index (CI; Arend, Reeves, Schirillo, &
Goldstein, 1991), the Color Constancy Index (CCI; Ling
& Hurlbert, 2008) and the Brunswick ratio (BR; Hansen
et al., 2007; Smithson & Zaidi, 2004; Yang & Shevell,
2002), which takes into account the adaptation under
the reference illumination. Equation 1 shows an
example of how this was implemented for the case of
BR.

When considering a particular subject’s data, we
noted aic as the chromaticity coordinates of his/her
selected representative c under illumination i (1
corresponds to D65, 2 to greenish, and 3 to yellowish).
Also, bic are the chromaticity coordinates of the
corresponding a1c when the illuminant i was applied.
The numerator computes the perceptual shift, i.e., the
difference between SRs chosen under D65 illuminant
and greenish/yellowish illuminants. The denominator
computes physical shift, i.e., the difference between
SRs chosen under D65 and their chromatic coordi-

nates when illuminated by greenish/yellowish illumi-
nants. Following this arrangement, a value of one
indicates perfect color constancy and zero no color
constancy.

BR
i

c ¼
jja1c � aicjj2
jjb1c � bicjj2

where i ¼ 2; 3 and

c ¼ 1; . . . ; 9 ð1Þ

Although there is no assumption of any specific color
space in the index formulae, we choose CIE1976 uv, a
perceptually uniform space which does not incorporate
any white point normalization as CIELab does
(Brainard, 1998; Wyszecki & Stiles, 1982). Table 4
shows the values of three indices (CI, BR, and CCI)
averaged for all subjects and considering each color
category and illumination. The data highlights the
discrepancies between indices, e.g., maximum and
minimum values within each column (highlighted in
bold) do not coincide for the same categories. In other
words, the results obtained for each color category
depend on the color constancy index selected.

Linear color constancy models

As Table 4 indicates, the chromatic settings of our
subjects were different for different illuminants. We
modeled the effects of the illuminant change using
linear models of color constancy, i.e., a linear
transformation matrix that relates two chromatic
settings of the same color under different illuminants.
To be able to relate the parameters of our models to
properties of the human visual system, we chose to

Figure 6. Average chromatic settings of the selected representatives in regular sessions. The symbols show the chromatic settings

for each background type: squares for Type 0, circles for Type I, and triangles for Type II. Points were computed by averaging the

corresponding SR for all subjects, for each particular background and illuminant. Panel A corresponds to D65, B to greenish, and C

to yellowish illumination.
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Figure 7. Individual chromatic settings results from four different subjects (regular sessions). Column A: under D65 illuminant;

column B: under greenish illuminant; and column C: under yellowish illuminant. The background was Type II in all cases. Individual

trials are represented by small dots joined by lines and their average is represented by a color-coded square.
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operate in LMS cone excitation coordinates (Brainard
et al., 1997; Burnham, Evans, & Newhall, 1957;
Jameson & Hurvich, 1964), calculated from the Smith
and Pokorny cone sensitivity functions (Smith &
Pokorny, 1975). Equation 2 formalizes the previous
approach where x and y are the LMS cone excitations
produced by the light reaching the observer from the
CRT monitor: x corresponds to the reference illumi-
nant (D65) and y corresponds to the test illuminant
(greenish or yellowish).

y ¼M x 1½ �T where

M ¼
m1;1 m1;2 m1;3

m2;1 m2;2 m2;3

m3;1 m3;2 m3;3

m1;4

m2;4

m3;4

0
B@

1
CA �R3·4 ð2Þ

The model is represented by the matrixM, which can
take one of several possible forms according to its

nonzero coefficients. These can also be understood in
terms of models of visual mechanisms:

Diagonal (D)

The diagonal model (mi, j¼ 0 if i 6¼ j) has only three
free parameters. This model only allows for multipli-
cative gain changes that are specific to each one of the
three cone classes. It is often referred as Von Kries
adaptation (Brainard & Wandell, 1992; Von Kries,
1905/1970).

Linear (L)

The linear model (mi, j ¼ 0 if j ¼ 4) has nine free
parameters. This model allows signals from each cone
type to be modulated independently and can describe
multiplicative gain changes both at the receptor level

Red Green Blue Yellow Neutral Purple Pink Orange Brown Mean

JRV 2.14 3.82 3.44 3.42 2.35 3.87 3.26 3.42 2.60 3.18

CAP 4.40 3.56 3.53 3.45 3.81 5.96 4.66 5.75 4.96 4.45

MV 3.51 4.31 5.60 5.10 2.91 6.62 4.66 5.25 4.34 4.70

MS 2.44 4.05 5.82 4.65 3.39 3.78 5.43 3.37 2.78 3.97

XO 2.98 3.87 3.33 3.28 3.00 4.38 3.27 4.02 3.22 3.48

RB 3.65 3.51 3.61 3.42 7.39 4.44 3.62 4.71 6.70 4.56

LC 5.94 6.55 5.06 7.61 4.71 5.76 5.87 4.85 7.11 5.94

AB 4.29 5.66 5.23 4.34 5.09 6.55 5.55 5.21 4.47 5.15

RBV 5.17 5.20 4.93 5.06 3.08 4.87 4.94 6.71 5.14 5.01

JC 5.54 4.45 5.67 4.94 4.81 6.63 6.19 6.92 4.79 5.55

Mean 4.03 4.50 4.62 4.53 4.05 5.29 4.74 5.02 4.61 4.60

Table 3. Variability (d) of mean chromatic settings in DE* units, averaged over illuminants and backgrounds. The columns show values
according to color category and the rows according to subject. The last column/row shows the means of the rows/columns. The value
in bold corresponds to the overall mean.

Category/Index
CI BR CCI

MeanCategory/Illuminant Greenish Yellowish Greenish Yellowish Greenish Yellowish

Red 0.37 0.63 0.69 0.65 0.82 0.76 0.65

Green 0.73 0.68 0.61 0.58 0.89 0.88 0.73

Blue 0.53 0.55 0.64 0.65 0.68 0.68 0.62

Yellow 0.71 0.76 0.51 0.49 0.72 0.75 0.66

Gray 0.55 0.56 0.62 0.63 0.61 0.62 0.60

Purple 0.49 0.58 0.72 0.78 0.77 0.79 0.69

Pink 0.55 0.64 0.54 0.58 0.64 0.68 0.60

Orange 0.62 0.75 0.53 0.51 0.73 0.76 0.65

Brown 0.50 0.70 0.75 0.57 0.96 0.82 0.72

Mean 0.56 0.65 0.62 0.60 0.76 0.75 0.66

Table 4. Three color constancy indices applied to our measures and split by color categories and illuminant type. Notes: All indices
were computed in the CIE1976 UCS uv uniform color space and averaged for all subjects and backgrounds. We highlighted in bold the
maximum and minimum values in each column, which reveal considerable differences within color categories.
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and after an opponent transformation (Brainard &
Wandell, 1992).

Affine (A)

The affine model does not set any initial coefficient
to zero, and it has 12 free parameters. It contains nested
versions of the previous two models. The first three
columns of M include the linear model and the fourth
column represents an additive process. This model can
be thought as an instance of the two-process model
proposed by Jameson and Hurvich (1964) (see also
Brainard & Wandell, 1992).

Diagonal plus Translation (DT)

The diagonal plus translation model (mi, j¼ 0 if i 6¼ j
and j , 4) has six free parameters and can be seen as a
simplification of the affine model. The first three columns
allow only formultiplicative gains for each cone class and
the last column allows a further additive process.

We studied the predictive power of each model
when multiple chromatic settings were used as data
points. Equation 3 generalizes Equation 2 into a single
system of linear equations when using more than one
data point. This formulation allows using standard
multiple linear regression methods to fit the model
parameters, i.e., to minimize the mean-square differ-
ence between the measured and the predicted points.
In Equation 3, the matrix X contains the LMS
coordinates of n colors xi under reference illuminant
and matrix Y contains the settings of those same
colors, yi, under test illuminant.

Y ¼MX where

Y ¼ ðy1j � � � jynÞ�R3xn and

X ¼ ð x1 1½ �0j . . . j xn 1½ �0Þ�R4xn ð3Þ
Equation 4 describes H , which contains all possible

subsets of nine colors and their combinations according
to their indices (one for green, two for blue, three for
yellow, etc.). Once a particular element of H was selected
we could fit the model parameters to this element as
described in Equation 5, substitute their LMS coordi-
nates and solve the linear system using least squares.
However, since LMS is not perceptually uniform, we
chose to follow the approach described by Brainard and
colleagues (Brainard et al., 1997; Brainard & Wandell,
1992). They solved the linear system through a
minimization process which determined the model
parameters according to the mean CIELab DE* color
difference between the N predictions and the data
points. The function to minimize is described by
Equation 6, where u is an operator that translates from
LMS to CIELab coordinates. FN was minimized using
the Matlab Optimization Toolbox. Model precision was

evaluated by computing the average DE* difference
between the whole set of nine chromatic settings and
their predictions computed from the matrix M.

H ¼ ðk1; . . . ; kNÞ; ki � 1; . . . ; 9f g; ki 6¼ kj;
�

N ¼ 1; . . . ; 9 and i; j ¼ 1; . . . ;Ng ð4Þ

ðyk1 j � � � jykNÞ ¼Mð xk1 1½ �0j � � � j xkN 1½ �0Þ

where ðk1; . . . ; kNÞ�H ð5Þ

FNðM;ðk1; . . . ; kNÞÞ¼
1

N

XN
i¼1

uðM xki 1½ �0Þ � uðykiÞÞ2
�

where uðLMSÞ�CIELab ð6Þ

We considered all possible combinations of SRs,
within the limits imposed by each model. For example,
when fitting the linear system in Equation 5, the
minimum number of points that the model can fit is
determined by the number of free parameters contained
in the model. This terminology is equivalent to a system
of linear equations where there are larger, fewer, or
equal number of equations than unknowns. The
underdetermined case occurs when the number of
unknowns is larger than the number of the equations
(the system is underconstrained). From this follows
that the diagonal model admits any number of data
points N � 1, diagonal plus translation admits N � 2
data points, linear admits N � 3 data points, and affine
N � 4 data points. This is also valid for Equation 6.

Figure 8 summarizes our modeling results as
described above. Panel A corresponds to greenish
illuminant and panel B to yellowish. The y-axis shows
the prediction error (in DE* units) associated with each
model as a function of the number of chromatic
settings used to fit it. Following the approach of
Brainard et al. (1997), we used the chromaticity
coordinates of the corresponding illuminant as a
reference white point in each case. The function
specified in Equation 6 was minimized to fit chromatic
settings x (corresponding to D65) and y (corresponding
to greenish or yellowish illuminants) keeping the same
background type. Take for instance panel A in Figure
8, where each point is the average model prediction
error from all possible combinations of elements of H
that contain the number of colors specified in the x-
axis, across backgrounds and subjects. Consider the
case when the nine SRs were measured both under D65
and greenish illumination using the same background
type. We fitted the diagonal model to only one
correspondence pair from the nine chromatic settings
available and used the same parameters to predict the
positions of all nine corresponding pairs. We repeated
this for all the other pairs and calculated the average
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CIELab DE* distance between predicted and measured
points for the nine chromatic settings pairs. We
extended this to all subjects and backgrounds. The
result of these calculations (average from 270 model
predictions) is shown in panel A as the leftmost filled
circle in the plot. To calculate the second leftmost circle
in the plot, we fitted the diagonal model to two
correspondence pairs from the nine chromatic settings
available and predicted the positions of all nine pairs
(36 possible combinations). This point represents the
average across subjects and backgrounds (1,080 model
predictions). The other circles were calculated similarly
by fitting the diagonal model to increasingly more data
points. The same reasoning was applied to the other
models, shown as triangles and squares in Figure 8.
Since the results of the minimization process in
Equation 6 depend on the initial seed, we used 100
random seeds (for larger values results tend to stabilize)
and the solution to the linear system specified by
Equation 5 (Brainard & Wandell, 1992) as a comple-
mentary seed. We selected the minimum optimization
value of all seeds.

Predictably, Figure 8 shows that adding more data
points and increasing the number of free parameters
lowers the model prediction error exponentially: the
more free parameters a model has, the more accentu-
ated the decay is. For instance, the Diagonal model
(circle symbols) improves less, from 10.9 to 7.1 DE* for

the greenish and from 13.3 to 9.1 DE* for the yellowish
as we add more fitting points. When the maximum
number of fitting points (nine) are used, the errors in
DE* are: 7.09 (D), 5.33 (DT), 5.35 (L), and 4.19 (A) for
the greenish illuminant and 9.13 (D), 7.55 (DT), 6.76
(L), and 5.79 (A) for the yellowish illuminant (see
Figure 9). In general, model errors under greenish
illuminant are lower than model errors under yellowish
illuminant. Simpler models tend to perform better with
a small number of fitting points whereas more complex
models tend to perform better with larger numbers of
fitting points. For instance the Linear and Affine
models start to perform better than the simpler
Diagonal when more than five points are considered.
There are also quantitative differences regarding the
illuminant: For up to five fitting points, error values are
between 4 and 7.5 DE* for greenish and between 6 and
9.6 DE* for the yellowish.

We tested the parsimony of the models to see
whether they include more parameters than it is
necessary by applying the Akaike Information Criterion
(Burnham & Anderson, 2002). This criterion measures
the relative goodness of fit of a model in terms of the
information lost when it is used to describe data (see
Appendix B). The results show that the best models in
Figure 8 are the simplest: Diagonal and Diagonal plus
Translation, implying that the Linear and the Affine
models are possibly over-fitting the data. In particular,

Figure 8. Model prediction error according to the number of colors used to estimate their parameters. Panel A corresponds to

greenish test illuminant and panel B to yellowish. Each point corresponds to a particular model (circles for the Diagonal, squares

for the Diagonal plus Translation, right-pointing triangles for the Linear, and left-pointing triangles for the Affine), computed from

all background types and subjects. For comparison we show the prediction error of Von Kries transformation applied to the

achromatic locus as a horizontal red broken line. The values were calculated using the corresponding reference white point for

each illuminant (greenish and yellowish—see Table 1).
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Akaike weights, which indicate the plausibility for each
model being the best are equal to zero for the Linear
and Affine. The results also show a clear tendency for
the Diagonal plus Translation to become the best in
terms of number of free parameters and prediction
error as we add more data points (Akaike weights
increase with increasing number of data points for the
Diagonal plus Translation model).

Discussion

Our previous results show the feasibility of using
several colors rather than a single color as a metric for
assessing the stability of color appearance under a
change of illumination. In the following section we
discuss the usefulness of this new metric, showing that
linear color constancy models satisfactorily explain the
transformations with a larger number of colors. At the
end of the section we introduce a new color constancy
index that takes into account several aspects of color
constancy not considered before.

Does including more colors increase the
precision of linear color constancy models?

Both graphs in Figure 8 illustrate clearly how the
predictive power of all models is increased by adding

more fitting points, something that is in agreement with
previous studies (Hansen et al., 2007; Olkkonen et al.,
2009; Olkkonen et al., 2010). However, the error curves
tend to a constant value after eight SRs, and this
suggests that measuring more points would lead to
minimal improvements. In this context, it is worth
noticing that our current fitting points were not
determined randomly but had a particularly even
distribution over the color space; thus our conclusions
become more relevant when all nine fitting points are
used. This highlights the advantage of measuring
several colors instead of just gray, and although it
disagrees with previous results (Speigle & Brainard,
1999), we believe it is unlikely to be the product of
experimental artifacts. Figure 9 shows the portion of
the phenomenon that is captured by the models. The
large differences in height between the bar labeled as
‘‘No-Effect’’ (which summarizes the effects of the
illumination), and the other bars suggest that all linear
models succeed in modeling the phenomenon (Brai-
nard, 1998; Brainard et al., 1997). However there is still
a small part that is not captured by the models.

If we ignore the Linear and Affine models, in Figure
8 there are some common qualitative features for both
illuminants that are worth mentioning:

Stability point at five SRs

All models approximately have the same precision
when five SRs are used for the fit, i.e., three free
parameters achieve similar results as twelve. This might
reflect the fact that considering less than five points in
our calculations allows for distributions of colors that
are not symmetric with respect to the center, something
that is less likely when more colors are considered.
Furthermore, models with more free parameters are
more sensitive to these asymmetries.

Diagonal outperforms the Diagonal plus Translation
before the stability point

This suggests a link between the number of colors
available and the complexity of the color constancy
mechanism needed: In a simpler environment, a cone
gain-based transformation outperforms the others.

Diagonal plus Translation outperforms the Diagonal after
the stability point

This represents an improvement from the Diagonal
model and suggests the involvement of the additive
process in a two-stage mechanism as proposed by
Jameson and Hurvich (1955).

Interestingly, the modeling of the chromatic settings
performed under the greenish illuminant is better than
under the yellowish one, and this effect is general to all

Figure 9. Models’ prediction error when all nine SRs points were

included. The first column (V) contains the subject average

variability in the trials (see Table 3). The last column (No

Effect� NE) is a quantitative measure of the illuminant shift

computed using the Identity matrix as a model. The groups

of bars labeled as D, DT, L, and A correspond each to the

Diagonal, Diagonal plus Translation, Linear, and Affine

models, respectively.
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models and fitting point numbers. This fact suggests a
higher degree of dispersion in the chromatic settings,
which may result from the split of the resulting colors
into several categories when illuminated by the
yellowish illuminant, something that did not occur
under the greenish illuminant (see further discussion
below).

Further insights into the role of color categories

The overall pattern of results shown in the previous
sections is broadly uniform across color categories, but
some particularities exist. For example, we expected the
behavior of gray (the color measured in achromatic
settings) to be outstanding in terms of variability (d),
adjustment time, and constancy index and to summa-
rize the behavior of the whole set of chromatic settings.
Interestingly, we have found that subject’s ability to
adjust gray and red are similar, closely followed by
many other categories. Also, gray is the color that takes
longer time to adjust, maybe because subjects can
discriminate more finely near the achromatic locus
(Boynton & Olson, 1987). Furthermore, we expected
color constancy indices for gray to be near the average,
and Table 4 shows that they are generally low, and in
the case of the CCI index, the lowest. Previous work
found higher color constancy for gray than for
chromatic stimuli (Olkkonen et al., 2010; Speigle &
Brainard, 1999), which is perhaps due to the fact that
we used simulated surfaces and illuminants instead of
real surfaces. We also found high color constancy
values (0.66 in average), which is in accordance to
similar studies (Foster, 2011; Hansen et al., 2007; Ling
& Hurlbert, 2008; Murray, Daugirdiene, Vaitkevicius,
Kulikowski, & Stanikunas, 2006; Olkkonen et al., 2009;
Olkkonen et al., 2010), a fact that is supported by visual
inspection of the plots in Figure 6, where interdistances
among measured colors are largely preserved. This
supports the finding that the categorical structure of
color space is largely preserved under illuminant
changes (Hansen et al., 2007; Olkkonen et al., 2009;
Olkkonen et al., 2010).

The differences in color constancy values found for
different categories suggest different properties for
different categorical colors. This implies that we should
always refer to the same color category when compar-
ing across color constancy measures. In the case where
we pool measures across several categories to produce a
single color constancy index (see below), these color
categories should be maintained for the index to be
consistent.

The particular properties of each categorical color in
terms of color constancy indices are likely determined
by stimulus configurations and subjects’ tasks. How-
ever, here we found no differences in terms of

background types, a result which is similar to others
(Brainard, 1998).

SCI: A new structural color constancy index

Color constancy indices attempt to capture the
extent of the phenomenon’s effect in a single number.
They relate perceptual data measured under a state of
adaptation to the corresponding data predicted for
‘‘perfect’’ adaptation (i.e., physical color shift). The
simplest indices quantify Euclidean distances (magni-
tude) among the colors of the test surface, the ideal
match and the observer match. Examples of these are
the CI (Arend et al., 1991), the BR (Troost & de Weert,
1991), and the BR/, which incorporates the direction
(orientation) between the perceptual and physical color
shifts (Foster, 2011). Several improvements have been
suggested. For instance, Ling and Hurlbert (2008)
proposed a new index CCI that incorporates the
matching error in the absence of illumination change
(memory shift) and Brainard (1998) proposed to use the
Equivalent Illuminant (EI) instead of the measured
adaptation point, which is calculated from different
measured points and thus captures the inter-distances
among the colors considered under a given adaptation
state (structural).

Following the previous discussion, we introduced a
new color constancy index, termed Structural Con-
stancy Index (SCI), which captures all the features
stated in Table 5. The new index is defined in terms of
matrix norms, which are extensions of the notion of
vector norms applied to matrices. As Equation 7
shows, the norm of a matrix A is obtained from the
norm of vectors x and Ax and describes the maximum
relative vector magnitude change under the linear
transformation A.

jjAjj2 ¼ sup
x 6¼0

jjAxjj2
jjxjj2

¼ max
ðxÞ2¼1

jjAxjj2 ð7Þ

In our context, the matrix A models the effects of the
illuminant change, i.e., given the coordinates x of a
color sample under the reference illuminant, it returns
the coordinates Ax of the same sample under the test
illuminant in a given color space. We define SCI as:

Property/Index CI, BR, BR EI CCI SCI

Magnitude Yes Yes Yes Yes

Orientation No No Yes Yes

Memory No Yes Yes Yes

Structure No Yes No Yes

Table 5. Summary of some properties of color constancy
incorporated into each index.
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SCIðApercep;AphysÞ ¼
jjApercepjj2
jjAphysjj2

� cosðangleðr; sÞÞ

¼ jjApercepjj2
jjAphysjj2

� rs

jjrjj2jjsjj2
ð8Þ

In Equation 8 SCI is defined as the product of two
factors. The first factor is the quotient of two matrix
norms, and computes the relative magnitudes of the
perceptual and physical effects of the illuminant, as is
commonly the case with constancy indices (Arend et
al., 1991; Foster, 2011; Hansen et al., 2007; Ling &
Hurlbert, 2008; Smithson & Zaidi, 2004; Yang &
Shevell, 2002). The second factor estimates how much
the direction of the adaptation coincides with the
direction of the actual illuminant change in the color
space considered. To compute this we need both Apercep

and Aphys to be affine matrices, with the last column of
Apercep specifying the translation vector r and the last
column of Aphys specifying the translation vector s.
Notice that here we are not using an affine matrix to
model the data as in previous sections, but to quantify
two different aspects of color constancy: magnitude
and orientation.

The coefficients of Apercep are determined from pairs
of corresponding chromatic settings under reference
and test illuminants and can be obtained following the
approach described in the modeling subsection above
(Equation 3). Likewise, the coefficients of Aphys are
determined from correspondences between the chro-
matic settings made under the reference illuminant and
physical simulations of the same colors under a test
illuminant. In this formulation, if matrices Apercep and
Aphys are equal, then color constancy is perfect. Finally,
memory effects like those discussed by Ling and
Hurlbert (2008) are neutralized since our measurements
were obtained from direct comparisons under reference
and test illuminants.

Figure 10 illustrates the behavior of Equation 8 for
several hypothetical cases. Panel A describes how the
magnitude size of each transformation contributes to
the value of the SCI. This contribution is always positive
and can be smaller or larger than one according to the
ratio between the norms of the Apercep and Aphys. The
latter case happens when observers correct for the
illuminant more than they should. Panel B describes the
contribution of the second term of Equation 8, i.e., a
weighting factor to penalize for angular deviations from
the direction of the simulated illuminant shift. As r and s
become more perpendicular, their product rs becomes
closer to zero. Although negative values are possible in
theory, in practice this weighting factor should be
positive assuming that r and s are far from perpendic-
ular. Structural information of the color constancy
phenomenon is implicitly embedded in the affine matrix.

Other indices such as BR would produce the same value
for all hypothetical settings located around the half
circumference defined by the broken line, since it only
compares the magnitudes of both shifts. For the
hypothetical cases described by s1 and s3, CI would have
a value of one, since it compares the magnitude of the
vector defined by the settings and their expected
location to the magnitude of the illuminant shift. Panels
C and D illustrate how structural information is
summarized into a single positive number. Popular
indices such as CI, BR, and CCI do not convey this
information since they are usually computed over the
achromatic setting. Panel C illustrates the case when
there is no translation (i.e., the last column of the affine
matrix is null) and the matrix can be interpreted in terms
of expansion (||A||2 . 1), retraction (||A||2 , 1), or
rotation (||A||2¼ 1). Panel D illustrates the case when
only the translation part is operative and the value of
the norm reflects this translation. Panel E shows an
exemplary case when the spatial relationships among
measurements are disrupted by just one chromatic
setting outlier. This structural disruption would be
embedded in the affine matrix, which represents a
compromise solution in between the prediction error of
the outlier and the rest of measurements. Notice, that in
this particular example there is only one outlier but
there could be more, with effects such as those described
in Panel C (contraction, expansion, and rotation),
leading to more complex outcomes. As Table 4 shows,
each index produces a different value for a different
color category; SCI deals with this variability by
summarizing the measurements for all categories into
an affine matrix. This casuistic is illustrated by panel E
whose chromatic setting outlier would have produced
values of CI, BR, or SCI notably different from the rest,
thus making the quantification of color constancy
dependent on the selected color category.

In common with other indices, the SCI can, in
theory, assume values that are larger than one or
negative, representing overcompensation or failures of
color constancy that may happen under certain
illumination conditions such as multiple illuminants,
non-Lambertian surfaces, self-luminous or fluorescent
materials, etc., that imply a violation of the initial
conditions of this analysis.

Table 6 shows the average values obtained from
applying four color constancy indices (BR, EI, CCI,
and SCI) to all subjects and background types,
discriminated according to illumination. All indices
were computed in the CIE1976 uv color space (the SCI
index was computed using the affine matrix described
above). There was no effect of background types in the
calculations. Interestingly not all indices gave the same
values; EI and BR were generally lower and SCI was
the highest. The differences between popular indices
such as BR and CCI were reported by Ling and
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Figure 10. Hypothetical cases of chromatic settings and their contribution to SCI values in the CIE1976 uv color space. Each panel

illustrates the contribution of a particular feature of our index. Dark squares correspond to chromatic settingsmade under the reference

illuminant, light squares correspond to hypothetical chromatic settings made under test illuminant, and circles correspond to a

simulated illumination of the chromatic settings made under the reference illuminant (dark squares - physical colors). The broken lines

group hypothetical chromatic settings done under the same illuminant condition. Panel A: effects of a shift in magnitude only with

respect of a simulated illumination. Panel B: effects of a change in the orientation from the simulated illuminant shift. Panels C and D:

effects of an expansion/contraction and a translation are captured and converted into a single number by the affine matrix norm. Panel

E: effects of the different spatial relationships on thematrix norm. Notice the different constraints detailed in the tiles of Panels C, D, and

E for each SCI example.
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Hurlbert (2008) and attributed to the incorporation of
memory shift into the index formula. SCI values are
slightly higher than CCI values, and in the case of the
greenish illuminant, larger than one. This fact is due to
the incorporation of ‘‘structural’’ components, i.e.,
measures of the interdistances among data points into
the index calculation (see panel C in Figure 10), which
can increase the total index value in some cases. We
calculated the contribution of the different components
in Figure 10 to the SCI values in Table 6 and found
that, for the greenish illuminant, the norm of Apercep is
slightly larger than the norm of Aphys, making the first
term of Equation 8 slightly larger than one. The
previous analysis implies that perfect color constancy is
achieved when SCI is equal to one and different values
indicate either lack of constancy (SCI ,1) or over-
compensation (SCI .1). In our case, we expected
values close to one due to the long adaptation period of
immersive illumination.

We tested whether the high values we found in Table
6 were due to the fact that observers had the chance to
see the Type I background colors (i.e., the colors to be
adjusted) often, and hence subjects performed matches
to the displayed colors instead of reproducing them
from their memory. This was done by repeating the
experiment with two new subjects using only Type II
background, i.e., they had not seen the Type I
backgrounds colors before (see Appendix C). Their
results were in agreement with those of the rest of the
subjects, and indeed their color constancy indices were
not lower than those of Table 6.

Table 6 reveals that only SCI differentiates between
the greenish and the yellowish illuminants. Further
inspection of the magnitude and orientation contribu-
tions revealed that these differences originated in the
norm of the perceptual matrix as explained in Panels C,
D, and E of Figure 10. In the previous modeling
subsection, we found lower prediction errors for the
greenish illuminant (see Figure 8), indicating that such
data is better captured by the fitting of linear models, a
process similar to the computation of SCI values. This
explains why chromatic settings under yellowish
illuminant have a higher degree of dispersion when
compared to chromatic settings under D65 than in the
greenish case. These differences manifest in Figure 6 as
subtle variations in the location of the yellow, orange,
brown, red, and pink data points, which may account
for the 18% difference between both illuminants in
Table 6. We could hypothesize about the origin of this
dispersion and say that greenish-illuminated colors fall
inside the broad green category, whereas yellowish-
illuminated colors fall into several categories and this
initial (first milliseconds) categorical perception may
influence the subject’s adaptation and subsequent
chromatic settings. However, this needs to be settled by
doing more experiments in the future.

Comparison to previous paradigms

Our contribution is complementary to the work of
others who have also studied successive color constancy
(Foster, 2011) under large periods of immersive
illumination and have used simulated (Hansen et al.,
2007; Olkkonen et al., 2009) or real (Olkkonen et al.,
2010) surfaces. These studies categorize a large number
of colored samples with higher results variance, while
we measured only nine relevant points with relatively
higher precision. Hansen et al. (2007; Olkkonen et al.,
2009) measured changes in the categorical boundaries
of the color space while Olkkonen et al. (2010) used a
conventional constancy index (including shift magni-
tude and orientation) applied to the categorical
prototypes. Our results qualitatively agree with their
findings regarding the stability of the categorical
structure of color space under illuminant changes
(Hansen et al., 2007; Olkkonen et al., 2009; Olkkonen
et al., 2010).

The chromatic setting paradigm was primarily
designed to deal with two main issues: (a) the state of
adaptation closely following the change of illuminant
(Foster, 2011) and b) the effects of instructions
regarding the nature of the stimuli (surface-match or
color-match criteria) (Troost & de Weert, 1991). For
this reason, it makes use of subject’s color naming
abilities, asking them to select their own colors instead
of reproducing arbitrary ones, thus improving on the
chromatic resolution limits of standard color-naming
techniques (Foster, 2011). The main disadvantage of
the method is arguably the saturation restriction to the
colors that subjects can initially select imposed by the
CRT monitor gamut limitations. However low-satura-
tion SRs were not particularly difficult to reproduce in
regular sessions.

Possible chromatic induction (Shevell & Wei, 2000)
effects resulting from the local influence of neighboring
patches were avoided by embedding the multiple test
patch within the Mondrian, randomizing its spatial and
chromatic structure from trial to trial (while keeping its
global statistics constant prior to illumination). In this
manner, subjects have to look at several places and
average the test patch color before making a decision.

Index/Illuminant Greenish Yellowish

BR 0.62 0.61

EI 0.58 0.59

CCI 0.76 0.75

SCI 1.03 0.85

Table 6. The Structural Constancy Index (SCI) and other typical
color constancy indices computed in the CIE1976 uv. Each value
corresponds to the average over subjects and background
types, also for the CCI and EI averaged over color categories.
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Also, general memory effects (Ling & Hurlbert, 2008)
were isolated from constancy effects by analyzing
memory matches with and without the illuminant
change.

Conclusions

We developed a new paradigm (the Chromatic
Setting) to study color constancy, which measures
several points in color space under extended periods of
adaptation to the illumination. We have shown the
paradigm to be feasible in terms of memory and
consistency of subject’s responses over time. No
remarkable differences were found between the role
played by gray and the rest of the chromatic categories
tested for this task. Our results show that linear models,
in particular the Diagonal plus Translation, succeed in
capturing the color constancy phenomenon. They also
show that including more colors does improve model
precision. A quantification of the phenomenon in terms
of commonly used color constancy indices reveals
substantial differences when applied to individual
colors. In addition to our paradigm, we developed a
more comprehensive color constancy index (the Struc-
tural Constancy Index), which accounts for changes in
magnitude, orientation, and structure, as well as
memory effects. When applied to our measures, our
index indicates nearly full constancy for the greenish
illuminant and slightly less constancy for the yellowish
illuminants tested. Our results do not show any
quantitative difference regarding the types of colored
background tested.

Keywords: color vision, color appearance/constancy,
categorization, computational modeling
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Appendix A

Given that our experiments were conducted over a
few weeks, we tested whether the uncertainty introduced
by longer-term memory was significantly larger than the
uncertainty present in a typical 25-min session. We did
this by repeating the same measures over different days
using two experienced subjects. They were required to
select four SRs (green, purple, orange, and gray) and to
reproduce the same colors seven days later. To collect
more data, the selection of SRs was repeated forty times
for each color. Figure A.1 shows the variability of our
measures for these control sessions: The small darker
points correspond to results for the first session and the

small lighter points to the second session. Squares and

triangles represent the corresponding averages. The

lightness variability results followed a similar trend and

were omitted from the plots for clarity’s sake. To

determine if both distributions of points are the same,

we computed the statistic D, the maximum difference of

the integrated probabilities of the two distributions,

developed by Fasano and Franceschini (1987) and

others (Peacock, 1983). Our results showed that,

predictably there were memory effects in all cases except

two. However, D was comparatively small, i.e., the

mean’s difference between the light and dark points was

always smaller than the standard deviation (itself about

1 DE*) of either the light or the dark point distributions.

Figure A.1. Results of the long-term memory control experiment for two subjects. Four categories were tested (40 trials each). Dark

and light dots were measured with a seven-day time difference. Averages are represented by triangles (first session) and squares

(second session). The results clustered near the origin, are equivalent to those of a typical achromatic setting experiment.
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Appendix B

The Akaike Information Criterion (AIC) method is
based on Information Theory, and it is widely used for
model selection, i.e., given several candidate models the
method selects the model, which minimizes the loss of
information when approximating the reality. In order
to test our four models we used the AIC version
adapted to small sets of samples (AICc) and the residual
sum of squares (RSS) as detailed in Equation 9, where
n corresponds to the number of data points and k to the
number of variables plus the error term (Burnham &
Anderson, 2002).

AICc ¼ nln
RSS

n

� �
þ 2kþ 2kðkþ 1Þ

n� k� 1
ð9Þ

Notice that AICc formulae depends exclusively on
the dimensions of the multivariate system resulting
from Equation 5, because this approach does not reflect
the number of free parameters existent in our tested
models we rearranged the system into an equivalent
univariate system. In order to apply the AICc we
assumed that our prediction errors followed a normal
distribution.

The model with the lowest AIC value is the best
model among all models specified. However, AIC
values become interesting when compared to the AIC
value of a series of models. Two measures associated
with AIC can be used to compare models: (a) the
difference between the model with the lowest AIC and
the rest (Di ¼ AICi – min(AICi)) and (b) the Akaike
weights, which quantify the plausibility of each model
as being the best (wi ¼ exp(�0.5Di)/

PR
r¼1exp(�0.5Dr)).

As a rule of the thumb, a Di , 2 suggests substantial
evidence for the model, values between 3 and 7 indicate
that the model has considerably less support, whereas
Di . 10 indicate that the model is very unlikely
(Burnham & Anderson, 2002).

Table B.1 contains the values of the RSS, AICc, Di

and wi when applied to our data according to the
model, number of fitting points and illumination used.
Notice that the reported RSS values do not correspond
to the minimization ones in Figure 6; this is because we
took as RSS value the accumulative error of the fitting
points that participated in the minimization process
only. In practice, RSS values were not obtained by
linear regression but from the minimization process
described in Equation 6; however, the target value of
the minimization is equivalent. Also the RSS values
used in Table B.1 resulted from the average over all
subjects and backgrounds.

Model 3n k

Greenish Yellowish

RSS AICc Di wi RSS AICc Di wi

D 15 4 293.18 56.59 0 0.96 535.1 65.62 0 0.99

DT 15 7 134.79 62.93 6.34 0.04 298.2 74.84 9.23 0.01

L 15 10 109.74 104.85 48.26 0 218.6 115.18 49.57 0

A 15 13 40.96 405.01 348.48 0 81.1 415.31 349.69 0

D 18 4 367.05 65.35 0 0.77 671.6 76.22 0 0.95

DT 18 7 187.90 67.42 2.07 0.26 425.9 82.15 5.92 0.05

L 18 10 164.36 91.24 25.89 0 328.4 103.70 27.47 0

A 18 13 82.27 144.36 79.00 0 170.5 157.47 81.25 0

D 21 4 440.95 74.43 0.44 0.45 808.3 87.16 0 0.88

DT 21 7 242.55 74.00 0 0.55 547.2 91.08 3.92 0.12

L 21 10 218.61 91.20 17.20 0 434.7 105.63 18.47 0

A 21 13 123.84 115.26 41.27 0 270.1 131.63 44.48 0

D 24 4 514.87 83.69 2.27 0.24 945 98.26 0 0.83

DT 24 7 297.47 81.41 0 0.76 685 101.45 3.19 0.17

L 24 10 273.25 95.30 13.88 0 550 112.07 13.81 0

A 24 13 169.47 109.31 27.90 0 381.9 128.81 30.55 0

D 27 4 588.79 93.04 3.72 0.13 1081.8 109.46 0 0.70

DT 27 7 353.17 89.31 0 0.86 794 111.19 1.72 0.29

L 27 10 327.65 101.14 11.83 0 617 118.23 8.77 0.01

A 27 13 226.17 111.39 22.07 0 495.3 132.55 23.10 0

Table B.1. The Akaike Information Criterion applied to our data. Notes: Each row corresponds to the model case considered, and the
columns correspond to the number of fitting points used, the number of free parameters in each model, the RSS, and the Akaike
results: AICc, Di, and wi. Note that the multivariate system was rearranged into an equivalent univariate system, therefore the 3n
factor in the second column. See details on how these values were computed in the main text.
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Di and wi values in Table 6 indicate that the
Diagonal and Diagonal plus Translation models are
the ones that best model the data, and indicate that
the Linear and Affine models significantly over-fit the
data. The small differences in Di between D and DT
are not conclusive about which is the best model;

however, there is a clear tendency as we add more
fitting points; the DT model becomes better than D.
From one to four fitting points the AIC indicates that
the best model is the D, DT, L, and A as expected due
to the coincidence between the number of fitting
points and the free parameters.
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Appendix C

In our experiments, observers performed chromatic
settings on a small percentage of patches over
illuminated backgrounds Type I (which already con-
tained selected representatives). This is potentially very
problematic, since observers might learn the correct
settings when they see the correct answer in the Type I
backgrounds. However, this is very unlikely to happen
in practice, given that observers see SRs illuminated by
colored light and presented on a variegated form (not
on a Type 0 background as they originally saw them).
Moreover, all observers (except the authors) did not
know whether they were related in any way to their
reference session selection.

To address this potential problem we performed a
control experiment with two new subjects who previ-
ously had only seen Type II backgrounds. The
experiment consisted of selecting SRs with Type II
background and all three illuminants. Figure C.1 shows
these results, where chromatic settings (averaged for the
two observers) are shown as filled circles and the

average chromatic settings for the rest of observers (see
Figure 6) are shown as squares. Panels A, B, and C of
Figure C.1 show results for the three illuminants (D65,
greenish, and yellowish respectively). To facilitate the
comparison, panels D, E, and F show the same results
replotted using the gray SR as a reference white point.

Table C.1 shows the values (averaged over these two
new subjects and backgrounds) for the three indices
discussed in the manuscript. If having seen chromatic
settings in reference sessions confers any advantage, the
two new subjects should consistently have lower index
values than the rest. The results in Table C.1 do not
support this.

Index/Illuminant

New observers (2) Original observers (10)

Greenish Yellowish Greenish Yellowish

BR 0.70 0.80 0.62 0.61

CCI 0.74 0.87 0.76 0.75

SCI 1.15 0.84 1.03 0.85

Table C.1. Color constancy indices of two observers from the
new control experiment (left columns) and the rest of observers
(right columns; see Table 5).

Figure C.1. Chromatic settings of two observers from the control experiment. This experiment tested the effect of using the chromatic

settings as background colors, i.e., none of them saw Background Type I. Squares represent the results for the two new observers

and circles represent the average for the original ten observers (see Figure 6). Bottom panels show the same data as in top panels,

using the ‘‘gray’’ SR as a reference white point. As before, markers are color-coded according to color categories.
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