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Abstract

In this work, we address the problem of estimating high-level semantic labels for
videos of recorded people by means of analysing their facial expressions. This prob-
lem, to which we refer as facial behavior categorization, is a weakly-supervised learning
problem where we do not have access to frame-by-frame facial gesture annotations but
only weak-labels at the video level are available. Therefore, the goal is to learn a set of
discriminative expressions appearing during the training videos and how they determine
these labels. Facial behavior categorization can be posed as a Multi-Instance-Learning
(MIL) problem and we propose a novel MIL method called Regularized Multi-Concept
MIL to solve it. In contrast to previous approaches applied in facial behavior analysis,
RMC-MIL follows a Multi-Concept assumption which allows different facial expres-
sions (concepts) to contribute differently to the video-label. Moreover, to handle with the
high-dimensional nature of facial-descriptors, RMC-MIL uses a discriminative approach
to model the concepts and structured sparsity regularization to discard non-informative
features. RMC-MIL is posed as a convex-constrained optimization problem where all
the parameters are jointly learned using the Projected-Quasi-Newton method. In our ex-
periments, we use two public data-sets to show the advantages of the Regularized Multi-
Concept approach and its improvement compared to existing MIL methods. RMC-MIL
outperforms state-of-the-art results in the UNBC data-set for pain detection.

1 Introduction
The face is one of the main human non-verbal communication channels. By analysing facial
gestures performed by people in a given situation, we can infer their mood, feelings and
intentions. Most effort in facial expression analysis has focused on proposing supervised
methods to detect a set of predefined gestures such as Action Units [9]. However, supervised
AU detection is far from being solved [27] and requires a huge labelling effort to annotate
spontaneous behavior databases. In contrast, we focus on a weakly-supervised problem
which we call facial behavior categorization. As an example, consider a set of videos of
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people recorded while watching an advertisement. The videos are labelled with the subject’s
appreciation of the advertisement, revealing whether or not he liked it. The task of facial
behavior categorization is to analyse the set of subject facial expressions during the whole
recording and estimate the "Like/Not Like" label. We consider it as a weakly-supervised
learning problem because we do not have access to frame-level annotations of gestures such
as AUs, but we only know a high-level label at the video-level. Thus, the goal is to learn a
set of discriminative expressions and how they determine these video weak-labels.

Facial behavior categorization can be naturally posed as a Multi-Instance Learning (MIL)
problem. In MIL, the training set T = {(X1,y1),(Xi,yi), . . . ,(XN ,yN)} is formed by N pairs
of bags Xi ∈ X and labels yi ∈ Y . Every Xi = {xi1,xi j, ...,xiM} is a set of M instances
xi j ∈ RD. The labels yi ∈ {0,1} are typically binary variables indicating whether the class
of the bag is positive or negative. In facial behavior categorization, we consider a video as
a bag Xi, its instances xi j correspond to facial-descriptors extracted at each video-frame and
yi refers to the video weak-label. Using the training set T , the goal is to obtain a classifier
F(X∗) = y∗ able to predict a label y∗ from a new test bag X∗. In order to learn the bag-
classifier, MIL methods assume that there exist an underlying relation between the bag label
and its instances distribution [10]. In this work, we differentiate between Single-Concept
and Multi-Concept MIL methods.

Single-Concept MIL methods assume that there exist a single target-concept in the in-
stance space. The probability of a bag to be positive is defined as the maximum probabil-
ity among its instances given this concept. In facial behavior analysis, Single-Concept ap-
proaches have been recently applied to supervised AU localization [26] and weakly-supervised
pain detection [25]. However, for general facial behavior categorization problems, the Single-
Concept assumption does not take into account that different types of expressions can appear
during the video which contribute differently to its label. For example, in the case of sub-
jects watching an advertisement, the subject can express different combinations of smiles or
neutral faces which will determine the "Like/Not Like" label.

Multi-Concept MIL methods can be considered a generalization of Single-Concept ap-
proaches. They assume that there exist a set of concepts in the instance space whose com-
bined presence in the bag determine its label. However, existing Multi-Concept methods are
limited in facial behavior categorization because they assume that the concepts can be mod-
elled by isotropic Gaussians where all the features have the same importance. In constrast,
facial-descriptors (instances) are typically highly dimensional and contain a low number of
informative features related with facial expression changes [31].

The main contributions of the paper are the following. Other than previous facial behav-
ior analysis work which uses Single-Concept methods, we use a Multi-Concept approach to
solve the facial behavior categorization problem. Moreover, we address the limitations of
current Multi-Concept approaches proposing Regularized Multi-Concept MIL (RMC-MIL),
a novel MIL method adapted to the highly dimensional nature of facial-descriptors:

• Discriminative concepts: RMC-MIL follows the Multi-Concept MIL assumption and
jointly learns a set of concepts (facial gestures) and a higher-level classifier defining
their contribution to the bag (video) label. In contrast to current Multi-Concept ap-
proaches, the concepts are not assumed to follow any fixed distribution and we model
them as discriminative hyperplanes in instance space.

• Structured Sparsity Regularization: RMC-MIL applies matrix L2,1-norm regular-
ization over the concept-hyperplanes. This regularization forces common sparsity
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across them and, as a consequence, they only use a common subset of features which
are expected to be related with facial gestures. To the best of our knowledge, this is
the first work to introduce this type of regularization in the context of MIL.

RMC-MIL learning process is posed as a convex-constrained optimization problem where all
the parameters are jointly learned and efficiently solved using the Projected-Quasi-Newton
method [23]. In our experiments, we test the proposed method in different public data-
sets and facial behavior categorization problems to show the advantages of our Regular-
ized Multi-Concept approach. RMC-MIL achieves better performance than existing Single-
Concept and Multi-Concept MIL methods and outperforms state-of-the-art results in the
UNBC dataset for pain detection.

2 Related work on Multiple Instance Learning

Most of MIL research follows the Single-Concept assumption. The various methods differ
on how the target-concept is obtained from the training set. Diverse-Density [18] model it
as a Gaussian and learn its mean and diagonal covariance using gradient-descent optimiza-
tion. Bayesian-MIL [22] adapts Logistic Regression to MIL and incorporates a prior over
the parameters in order to perform feature selection. MM-MIL [28] uses a mixture of linear
classifiers to represent a muti-modal target-concept. Other approaches reformulate standard
supervised methods such as AnyBoost [30], SVM [1, 4], Gaussian Processes [14] or Random
Forests [15] and adapt them to the MIL assumption. As discussed above, Single-Concept ap-
proaches can not model that different concepts (expressions) can appear inside a bag (video)
and that they can have different contribution to its label.

Multi-Concept MIL methods learn a set of concepts in the instance space and a bag-
classifier defining how their presence define the label. For this purpose, the bags are embed-
ded into a K dimensional space where standard classifiers can be used. Each dimension in
this space contains the bag probability given the k-th concept following the Single-Concept
assumption. In a seminal work, DD-SVM [6] proposed to learn the set of concepts by us-
ing multiple runs of Diverse Density initialized from all the instances in the training set.
However, its high computational cost makes it impractical for large data-sets as in the case
of facial behavior categorization. Posterior works have considered to model the concepts
as hyper-spheres (isotropic Gaussians) centered in a set of training instances (prototypes).
MILES [7] consider all the training instances in the data-set as potential prototypes and
selects the most relevant with l1-norm SVM. MILIS [11] uses a coordinate descent proce-
dure to iteratively learn the most relevant prototypes and the bag-classifier. Recently, [12]
proposed an algorithm based on AdaBoost to select a set of prototypes from different infor-
mation sources.

3 Regularized Multi-Concept Multi-Instance Learning

In this section we describe the proposed Regularized Multi-Concept Multi-Instance Learning
approach (RMC-MIL). We firstly explain the non-regularized version of the method in 3.1
and then we extend it to the regularized case in 3.2.
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Figure 1: Overview of the proposed Multi-Concept MIL method. Concepts are modelled as a
set of K hyperplanes zk in instance space. Given a bag, it is represented using the probability
of its instances given each concept. The bag-classifier w maps this bag-representation into
high-level labels. Both Z and w parameters are jointly optimized during training.

3.1 MC-MIL
Let us denote Z= [z1 z2 . . . zK ] as a RD×K matrix where each column zk is a D-dimensional
hyperplane classifying instances depending whether they belong or not to the k-th concept.
Now we define the probability of an instance xi j given a concept k as p(xi j|zk) = σ(zk

T xi j)
where σ(s) corresponds to the sigmoid function.

Following the standard MIL assumption, the probability of a bag Xi given a concept k is
defined as p(Xi|zk) = max j p(xi j|zk). Since max(.) is not differentiable, we approximate it
using the Generalized Mean (GM) function defined as: p(zk|Xi) = (∑M

j=1 p(zk|xi j)
r)

1
r . GM

have been previously used in MIL methods [25] and is equivalent to the arithmetic mean
when r = 1 and to max function when r tends to ∞.

Following the main idea of current Multi-Concept approaches, we define:

g(Xi,Z) =< p(Xi|z1), p(Xi|z2), . . . , p(Xi|zK)>
. (1)

Intuitively, g(Xi,Z) embeds the bag Xi into a K-dimensional space, where the value in the
k-th dimension is the probability of the bag i given the concept k. Given g(Xi,Z), the bag-
classifier is defined as F(Xi) = sign(wT g(Xi,Z)), where w = [w1,w2, . . . ,wK ] are the pa-
rameters of an hyperplane which separates positive and negative bags embedded in the K
dimensional space. Figure 1 shows an overview of the proposed MC-MIL method.

The goal of MC-MIL is to learn the classifier F(X) estimating the optimal concept hy-
perplanes Z and the bag-classifier w given the training set T . For this purpose, we use a
classification loss function ` and solve the following optimization problem:

min
w,Z

L(T ,Z,w) =
N

∑
i=1

`(wT g(Xi,Z),yi) =−
N

∑
i=1

yi ln(pi)+(1− yi) ln(1− pi) (2)

where pi is defined as σ(wT g(Xi,Z)) and can be understood as the probability of the bag
Xi to be positive. Note that we used logistic loss similar to other existing MIL methods.
However, any differentiable classification loss can be used instead.
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3.2 Regularized MC-MIL
In facial behavior categorization, the instances xi j lie in a high dimensional space and there
is a high number of potential non-informative features. In this scenario, it is required to
incorporate regularization mechanisms in order to find the discriminative features and reduce
the risk of overfitting [21]. For this purpose, we introduce in Eq. 2 a regularizer over Z:

min
w,Z

L(T ,Z,w) =
N

∑
i=1

`(wT g(Xi,Z),yi)+λΩZ(Z) (3)

where λ is a positive scalar controlling the importance of the regularization term. In this
work, we explore the use of the matrix L2,1-norm regularization ΩZ(Z) = ||Z||2,1 defined as
||Z||2,1 = ∑

D
d=1 ||zd ||2, where zd denotes the d-th row of matrix Z.

It is known that L2,1-norm encourages sparsity across the rows of Z [2]. The use of
structured sparsity regularization is motivated by a previous work [31] in Multi-Task Learn-
ing for supervised facial expression recognition. That work uses L2,1 regularization to force
joint sparsity between independent facial expressions classifiers. Similarly, in the case of
RMC-MIL, this regularization encourages the concept hyperplanes to use a common subset
of features expected to be related with facial expression changes.

4 RMC-MIL optimization
In order to efficiently minimize Eq. 3 including loss and the non-smooth L2,1 regularization
terms, we propose to use the Projected Quasi-Newton method (PQN) 1 presented in [23].
In 4.1 we briefly describe PQN and in 4.2 we explain how we apply it to RMC-MIL. It is
worth mentioning that Eq. 3 is not convex and is not guaranteed to converge into a global
minimum using PQN. However, most of state-of-the-art MIL methods are non-convex [16],
and local-optimal solutions are shown to achieve good results.

4.1 Projected Quasi-Newton Method
Projected-Quasi-Newton is a generalization of standard Quasi-Newton method which mini-
mize convex-constrained problems of the form:

min
x

f (x) s.t x ∈ C (4)

where f (x) is any continuous differentiable function and C is a convex set.
Similarly as Quasi-Newton method, PQN minimize f (x) using iterative 2nd-order gra-

dient descent. At the k-th iteration, a second-order approximation of f (x) is computed as:

qk(x) f (xk)+(x− xk)
T

∇ f (xk)+
1
2
(x− xk)

T Bk(x− xk) (5)

where xk is the solution at iteration k and Bk is a positive definite approximation of the
Hessian matrix ∇2 f (xk). PQN uses the Limited-memory-BFGS strategy [5] to approximate
Bk using a diagonal plus low-rank compact form. This approach is convenient when the
number of variables in x is large. Using (5), PQN finds a more optimal xk+1 by solving:

xk+1 = min
x

qk(x) s.t xk ∈C (6)

1Code available at: http://www.cs.ubc.ca/ schmidtm/Software/PQN.html
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This sub-problem is solved by using Spectral Projected Gradient (SPG) [3] which computes
the solution to Eq. 6 with a gradient descent approach but, at each iteration, the solution x is
projected into the convex set C using a projection function PC(x):

PC(x) = min
c
||c− x||2 s.t c ∈ C (7)

Intuitively, c is the nearest point to x in terms of the euclidean distance which belongs to the
set C representing feasible solutions. As explained in [23], the PQN method is particularly
interesting when we are minimizing a function such as Eq. (3) with matrix L2,1-norm reg-
ularization. In this cases, the soft-regularizer λΩ(x) is non-smooth but induces the solution
to be in the convex norm-ball: C = {x | ||x||2,1 ≤ τ}. Note that τ is the ball radius and it is
directly related with the original parameter λ . In this case, the projection PC(x) for a given
x can be efficiently computed. For more details about SPG and the Projected-Quasi-Newton
algorithms, the reader is referred to the original papers.

4.2 RMC-MIL optimization via PQN method
In order to solve RMC-MIL optimization, we firstly reformulate Eq. 3 as the following
equivalent constrained-convex optimization problem:

min
w,Z

L(w,Z) =
N

∑
i=1

`(wT g(Xi,Z),yi) s.t. ||Z||2,1 ≤ τZ (8)

where the constraint forces Z to lie in the convex L2,1-norm ball with radius τZ .
Secondly, we define the gradient ∇L(w,Z) using the first order derivatives of L w.r.t w

and zk. Being ` defined as the logistic-loss function, they can be expressed as:

∂L
∂w

=−
N

∑
i=1

(yi− pi)g(Xi,Z) (9)

∂L
∂zk

=−
N

∑
i=1

wk

Mi
(yi− pi)

(
1

Mi

M

∑
j=1

pi jk

) 1
r−1 Mi

∑
j=1

pr
i jk(1− pi jk)xij (10)

where pi = σ(wT g(Xi,Z)), pi jk = σ(zT
k xi j), Mi is the total number of instances in Xi and r

is the parameter used in the Generalized-Mean function.
With the above definitions, we apply the Projected-Quasi-Newton explained in Sec. 4.1.

During the Spectral Projection Gradient steps, the projection of Z into the L2,1 norm-ball
with radius τZ can be computed in linear time [23]. RMC-MIL source code will be available
at http://cmtech.upf.edu/research/projects/rmc-mil.

5 Experiments
Other than existing work on facial behavior analysis [25, 26] we propose a a Multi-Concept
MIL approach. In addition, our method proposes the usage of discriminative concepts
and structured sparsity regularization to handle the highly dimensional nature of facial-
descriptors. In this section, we first describe the facial-descriptors and the data-sets used
in the experiments. In 5.2 we analyze the impact of the number of concepts and the impact
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of the regularization on the final results. In 5.3 , we compare RMC-MIL to standard Single-
Concept and Multi-Concept MIL methods. Finally, we illustrate the ability of RMC-MIL to
discover discriminative facial expressions from weak-labelled videos.

5.1 Datasets and experimental setup
Facial-descriptors: Given a video (bag), we extract a facial-descriptor (instance) for each
frame. The whole process is illustrated in Figure 2. Firstly, we obtain a set of 49 land-
mark facial-points with the method described in [29]. Then, the face is aligned and re-sized
(250x250) by estimating an affine transformation from the obtained landmark points and a
mean-shape computed from all video-frames. Finally, a set of 3D-Temporal-SIFT descrip-
tors [24] 2 are extracted from local patches placed in 16 landmark points (8 for eyes and
eyebrows, 2 for nose wings and 6 for mouth). The final facial-descriptor is obtained by
concatenating the 3D-SIFT features extracted from each patch resulting in a total of 2560
dimensions. This patch-based facial-descriptor is similar to the used in other works such as
[8]. However, we use 3D-Temporal-SIFT instead of SIFT in order to encode the temporal
information present in facial expressions. The size of the local patches has been set to 30 by
30 pixels and a temporal window of 0.5 seconds has been used.

Local Cuboids

Spatio-Temporal SIFT Final facial-descriptor
Aligned image

and landmark points

Original frame 

and detected landmarks

ST-SIFT

Patch 1

ST-SIFT

Patch N

Figure 2: (i) 49 extracted landmark points. (ii) image aligned with the obtained affine trans-
formation (ii) Spatial-Temporal SIFT descriptors extracted from each local cuboid. Red
points corresponds to the subset of landmarks used.

AM-FED: The AM-FED dataset [19] contains 242 on-line web-cam recordings from
different subjects watching three TV advertisements. After watching a video, subjects were
asked two questions: "Did you like the video?" and "Do you want to view this video again?".
The subjects chose between positive (1), neutral (0) or negative responses (-1). The goal is to
analyse the subject’s facial behavior during the advertisement and predict these labels. Sim-
ilar as [20], only videos where the subjects reported positive (1) and negative (-1) answers
to the questions are considered. A 3-fold cross validation is used for evaluation where the
videos corresponding to one advertisement are used for testing. 26 videos were discarded for
the experiments since the detection of landmark points failed. A total of 158 and 94 videos
for the "Watch/Not Watch again" and "Like/Does not like" problems respectively are used.
To the best of our knowledge, we are the first work in applying weakly-supervised learning
to this data-set without previous supervised detection of AUs.

UNBC-McMaster: The UNBC-McMaster Shoulder Pain Expression Archive Database
[17] contains 200 recordings of 25 different subjects undergoing some kind of shoulder pain.
During the sessions, the subjects performed active and passive arm movements and expert
coders annotate the different levels of pain felt. Levels are between 0 (no pain) to 5 (strong

2Code available at: http://crcv.ucf.edu/source/3D
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pain). The work in [25] reported the state-of-the-art results in this data-set for weakly-
supervised pain detection. In our experiments, we follow the same experimental setup: the
sequence pain levels are converted into no pain (-1) and pain (1) binary labels and the task
is to classify the sequences by analysing the subjects facial gestures during the session. A
Leave-One-Subject-Out Cross-Validation is used for evaluation. Only subjects with more
than one sequence are used resulting in a total of 147 videos and 23 subjects.

5.2 Multiple Concepts and Structural Sparsity Regularization for
Facial Behavior Categorization

In this experiment, we investigates the dependence on the number of concepts (as deter-
mined by K) and the impact of the proposed regularization (controlled by τZ) on RMC-MIL
performance. We also evaluate the results when no regularization is used (MC-MIL). In ad-
dition, we measure the common sparsity between the concept-hyperplanes computed as the
Gini Coefficient [13] over the L2-norms of Z rows. This measure indicates how many fea-
tures have a very low contribution defining the concepts. Figure 3 shows the Area Under the
Curve obtained in "Watch/Not watch again" and "Pain/No pain" problems. Since RMC-MIL
and MC-MIL parameters are randomly initialized, we report the mean and variance over five
runs.

0.5 5 10 25 50 100 MCMIL0.5 5 10 25 50 100 MCMIL

A
U
C

0.5

1
1

5

10

25

50

100

Sparsity

200

τZ

C
o
m

m
o
n
 sp

a
rsity

0

1

Figure 3: AUC obtained by RMC-MIL and MC-MIL in "UNBC-Pain/No pain" (left) and
"AM-FED-Watch/Not watch again" (right) problems. Bar colors indicates the number of
concepts used and X axis refers to different values for τZ . Blue line corresponds to the mean
common sparsity coefficient for all K given a fixed τZ value.

As expected, the performance decreases for too small and too large τZ values (including
for MC-MIL). In the first case, too much sparsity is imposed on Z whereas in the second
one, large values cause the regularization to have no impact. Note that the best results are
obtained with a high common sparsity between concept-hyperplanes. This indicates that
only a small subset of facial-descriptor features is useful to discriminate discriminative fa-
cial expressions. The results also show that the use of more concepts consistently improves
the performance except in the case of unregularized MC-MIL. This can be explained be-
cause the more concepts are used the more parameters need to be learned. Therefore, the
regularization has a critical importance in order to reduce overfitting. The variance over
different runs shows a stable behavior of RMC-MIL despite random initialization. In con-
clusion, the results demonstrate the advantages of using multiple concepts in facial behavior
categorization and the effectiveness of structured sparsity regularization in this context.
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5.3 Comparison with other MIL methods
In this experiment, we compare the performance of RMC-MIL with four popular MIL meth-
ods: MilBoosting [30], MI-Forest [15], MILES [7] and MILIS [11]. MilBoosting and MI-
Forest follow the Single-Concept assumption and implicitly incorporate feature selection by
using single-feature decision-stumps to model the target-concept. Note that MilBoosting has
been recently applied to weakly-supervised pain detetion [25] and MI-Forest has achieved
comparable or better performance than other MIL methods. On the other hand, MILES and
MILIS are popular Multi-Concept approaches modelling the concepts as isotropic Gaussians
in the instance space where all the features have the same importance.

For MI-Forest, we have used the code provided by the authors and the same parameters
used in all the original paper experiments. For the other methods, we have developed our
own implementation. Same as [25], our MilBoosting implementation use single-feature de-
cision stumps as weak-classifiers and Generalized Mean to approximate the max function.
In MILES and MILIS, the parameters σ and C (see original paper) have been optimized
using 4-fold-cross-validation over the training set. For RMC-MIL, the parameter τZ and the
number of concepts have been fixed to 50 and 200 respectively for all the experiments. Table
1 shows the AUC obtained in AM-FED and UNBC data-sets. In the case of UNBC, we
also report the accuracy computed at the Equal Error Rate point of the Receiver Operating
Characteristic curve in order to compare our results to [25]. For MI-Forest and RMC-MIL
the results are computed as the mean obtained over five different runs.

MILES[7] MILIS[11] MilBoosting[30] MI-Forest[15] MS-MIL [25] RMC-MIL
AM-FED: Like/Do not Like 0.62 0.63 0.61 0.68 - 0.72

AM-FED: Watch / Not watch again 0.76 0.73 0.83 0.78 - 0.87
UNBC: Pain/No Pain 0.85 / 78.2 0.82 / 76.9 0.78 / 76.9 0.81 / 75.8 - / 83.7 0.92 / 85.7

Table 1: Results obtained by Multi-Concept, Single-Concept MIL methods and RMC-MIL
in the AM-FED and UNBC data-sets. See text for details

As the reader can observes, RMC-MIL achieves better performance in all the problems.
Given these results and the reported in Sec. 5.2, our hypothesis is that RMC-MIL outper-
forms Single-Concept approaches because it does not assume that the presence of a unique
concept (facial expression) in a bag determine the video label. This allows RMC-MIL to
learn different types of discriminative gestures which can appear during the video and con-
tribute to the video-label. On the other hand, the better results of RMC-MIL compared
to Multi-Concept approaches can be explained because RMC-MIL can better handle the
highly-dimensional nature of facial-descriptors. The concepts are not assumed to follow a
Gaussian distribution and the incorporation of matrix L2,1 regularization is able to discard
non-informative features. State-of-the-art results reported in [25] for the UNBC data-set,
are not directly comparable since they use Bag-of-Words-based features and a ensemble of
MilBoost classifiers trained with bootstrapped data. However, the results using RMC-MIL
and 3D-SIFT-based facial-descriptors compare favorably to their approach.

5.4 Applying RMC-MIL to discover discriminative facial expressions
To provide insight into what RMC-MIL is actually learning, we visualize the expressions
which determine the video labels. Using RMC-MIL, we can consider a video frame as a bag
with only one instance and classify it. Note that instance classification can be understood as
a weighted sum (determined by w) of the instance probabilities for each concept zk. In this
experiment, we have trained RMC-MIL for the different problems and applied the learned
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model to all the frames in the data-set. Again, the parameter τZ and the number of concepts
have been fixed to 50 and 200 respectively. Figure 4 shows the most positive and most neg-
ative frames in a set of random selected videos from both data sets. For the UNBC dataset,
different kind of facial expressions representing pain are considered more positive whereas
neutral faces obtain less probability. For the AM-FED problems, RMC-MIL learns that
smiles contribute positively to the bag label whereas neutral faces are considered negative.
Note that these discriminative facial expressions represent different appearances with vary-
ing intensity and which depend on the subject. RMC-MIL can effectively handle these facial
expressions differences since it is able to model them by using a Multi-Concept approach.

Figure 4: Most positive and negative instances estimated by RMC-MIL in a set of randomly
selected videos for the different facial behavior categorization problems

6 Conclusions and future work
In this work, we have presented Regularized-Multi-Concept MIL and its application to facial
behavior categorization. Other than previous MIL methods used in facial behavior analysis,
RMC-MIL does not follow a Single-Concept assumption. Moreover, in contrast to exist-
ing Multi-Concept MIL methods, RMC-MIL can learn more optimal concepts from high-
dimensional facial-descriptors by using a discriminative approach and structured sparsity
regularization. In the experiments, we have shown the improvement of RMC-MIL over ex-
isting Single-Concept and Multi-Concept MIL methods and its ability to learn discriminative
facial gestures from weakly-labeled data. Future work will focus on incorporating tempo-
ral information in the model in order to take into account how different concepts appear in
time-domain. This information is expected to be important to solve complex facial behavior
categorization problems.
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