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ABSTRACT

Describing textures is a challenging problem in computer vision and pattern recognition. The clas-
sification problem involves assigning a category label to the texture class it belongs to. Several fac-
tors such as variations in scale, illumination and viewpoint make the problem of texture descrip-
tion extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open
research problem. In this paper, we first show that combining multiple local texture descriptors sig-
nificantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter
this problem, we propose to use an information-theoretic compression technique to obtain a compact
texture description without any significant loss in accuracy. In addition, we perform a comprehen-
sive evaluation of pure color descriptors, popular in object recognition, for the problem of texture
classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a,
KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact
multi-texture approach outperforms the single best texture method alone. In all cases, discriminative
color names outperforms other color features for texture classification. Finally, we show that com-
bining discriminative color names with compact texture representation outperforms state-of-the-art
methods by 7.8%, 4.3% and 5.0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respec-
tively.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Classifying textures is a difficult problem in computer vision
and pattern recognition. The task is to associate a class label to
its respective texture category. In recent years, a variety of tex-
ture description approaches have been proposed (Ojala et al.,
2002; Guo et al., 2010; Lazebnik et al., 2005; Chen et al., 2010;
Guo et al., 2012; Zhao et al., 2012; ul Hussain and Triggs, 2012;
Varma and Zisserman, 2010). These approaches can be divided
into two categories, namely sparse and dense representations.
The sparse representation works by detecting feature points ei-
ther based on interest point or dense sampling strategy. Feature
description is then performed on these sampling points (Lazeb-
nik et al., 2005; Zhang et al., 2007). The second strategy, dense
representations, involves extracting local features for each pixel
in an image (Ojala et al., 2002; Guo et al., 2010; Chen et al.,
2010). In this paper, we investigate the problem of texture clas-
sification using dense local texture representations.

A variety of texture description approaches exist in litera-
ture (Ojala et al., 2002; Guo et al., 2010; Lazebnik et al., 2005;
Chen et al., 2010; Guo et al., 2012; Zhao et al., 2012). One
of the most successful approaches is that of Local Binary Pat-
terns (LBP) (Ojala et al., 2002) based image representations.
Other than texture classification, LBP have been successfully
employed to solve other vision problems as well, such as object
detection (Zhang et al., 2011), face recognition (Ahonen et al.,
2004) and pedestrian detection (Wang et al., 2009). LBP de-
scribes the neighbourhood of a pixel by its binary derivatives
which are used to form a short code to describe the pixel neigh-
bourhood. A variety of LBP variants have been proposed (Guo
et al., 2010; Ylioinas et al., 2013, 2012). Combining multi-
ple texture features, such as variants of LBP features, is still an
open research problem. The work of Guo et al. Guo et al. (2012)
proposes a learning framework to combine variants of LBP fea-
tures for texture classification. Tan and Triggs (Tan and Triggs,
2007) propose to combine Gabor wavelets and LBP features for
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the problem of face recognition. In this paper, we propose to
use a heterogeneous feature set by combining multiple texture
description methods.

Combining multiple texture description methods have an
inherent problem of high-dimensional final image represen-
tations. Recently, Elfiky et al. Elfiky et al. (2012) pro-
posed to use a divisive information theoretic clustering (DITC)
method (Dhillon et al., 2003) to counter the problem of high-
dimensionality of bag-of-words based spatial pyramid repre-
sentations. The DITC compression was shown to reduce the di-
mensionality of image representations without any significant
loss in accuracy. Similar to the work of Elfiky et al. (2012),
we propose to use the DITC approach to compress the high-
dimensional multi-texture representation. However, different to
the work of Elfiky et al. (2012), here we investigate compress-
ing a multi-texture histogram to obtain a single heterogeneous
texture representation.

Generally, state-of-the-art texture descriptors operate on grey
level images thereby ignoring the color information. Color in
combination with shape features has been shown to yield ex-
cellent results for object recognition (van de Sande et al., 2010;
Khan et al., 2012b, 2013c), object detection (Khan et al., 2012a)
and action recognition (Khan et al., 2013a). Color description
is a challenging problem due to significant variations in color
caused by changes in illumination, shadows and highlights. Re-
cent works have shown that an explicit color representation
improves the performance for object recognition (Khan et al.,
2012b, 2013c), object detection (Khan et al., 2012a) and action
recognition (Khan et al., 2013a). In this paper, we perform a
comprehensive evaluation of pure color descriptors, popular in
object recognition, for the task of texture classification.
Contributions: We first show that combining multiple texture
description methods significantly improves the performance
compared to using the single best texture method alone. We
further propose to use information theoretic compression ap-
proach to compress high-dimensional multi-texture features
into a compact heterogeneous texture representation. Finally,
we provide a comprehensive evaluation of color features, pop-
ular in object recognition, for the task of texture classifica-
tion. This paper extends our earlier work (Khan et al., 2013b)
for texture classification that only evaluated the contribution of
color for texture recognition. Beyond the work in Khan et al.
(2013b), we here investigate the problem of combining multiple
local texture descriptors for robust texture description. We per-
form extensive experiments on four challenging texture datasets
namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10.

The results of our experiments clearly demonstrate that com-
bining multi-texture descriptors significantly improves the per-
formance compared to the single best method alone. We further
show that multi-texture representations can be compressed ef-
ficiently without any significant loss in accuracy. Finally, our
comprehensive evaluation of color features suggest that dis-
criminative color names outperforms other color descriptors for
texture recognition. By combining the best color descriptor
with our compact heterogenous texture representation provides
state-of-the-art results on three of the four texture datasets.

The paper is organized as follows. In Section 3 we investi-

gate the problem of combining multiple texture descriptors. A
comprehensive evaluation of pure color descriptors for texture
description is provided in Section 4. In Section 5 we provide ex-
perimental results. Section 6 finishes with concluding remarks.

2. Related Work

A variety of texture description approaches have been pro-
posed in recent years (Ojala et al., 2002; Guo et al., 2010;
Lazebnik et al., 2005; Chen et al., 2010; Guo et al., 2012; Zhao
et al., 2012; Ylioinas et al., 2013; Leung and Malik, 2001).
Varma and Zisserman (2010) propose a statistical approach for
texture modeling using the joint probability distribution of fil-
ter responses. A multiresolution approach based on local binary
patterns (LBP) is proposed by Ojala et al. (2002) for gray-scale
and rotation invariant texture classification. The LBP is one of
the most successful approaches for texture classification with
several variants existing in literature (Guo et al., 2010; Ylioinas
et al., 2013, 2012). Chen et al. (2010) propose a method based
on Weber’s law consisting of two components namely differ-
ential excitation and orientation. An image is represented by
concatenating the two components in a single representation.
ul Hussain and Triggs (2012) introduce an approach that uses
lookup-table based vector quantization for texture description.
A set of low and mid-level perceptually inspired image features
are proposed by Sharan et al. (2013) for texture classification.

Combining multiple texture representations for robust classi-
fication (Guo et al., 2012; Li et al., 2004; Tan and Triggs, 2007;
Hong et al., 2014) is an interesting problem. The work of Tan
and Triggs (2007) combines Gabor wavelets and LBP for the
problem of face recognition. Ylioinas et al. (2011) combine
contrast information together with local binary patterns for im-
proved gender classification. A combination of HOG, LBP and
Gabor features is used by Li et al. (2013) for gender classifi-
cation. To counter the dimensionality of the proposed image
representation, Partial Least Squares (PLS) is used to learn a
low-dimensional representation. Hong et al. (2014) propose a
numerical variant of LBP which is efficient and rotation invari-
ant. The method is combined with other cues by a covariance
matrix. Guo et al. (2012) propose a learning framework to fuse
a variety of LBP variants such as conventional LBP, rotation in-
variant patterns, local patterns with anisotropic structure, com-
pleted local binary patterns and local ternary patterns. Similar
to Guo et al. (2012), we investigate the problem of combining
multiple texture description approaches. However, instead of
only combining LBP variants (Guo et al., 2012), we here in-
vestigate fusing multiple texture descriptors to obtain a single
heterogeneous texture representation.

A variety of color description approaches have been pro-
posed in the field of object and scene recognition (Gevers and
Smeulders, 1999; Bosch et al., 2006; van de Weijer and Schmid,
2006; van de Sande et al., 2010; Khan et al., 2012b, 2013c).
Bosch et al. (2006) propose to compute SIFT descriptors di-
rectly on HSV channels for image classification. A compre-
hensive evaluation of color descriptors is performed by van de
Sande et al. (2010). It has been shown that using an ex-
plicit color descriptor significantly improves the performance
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for object recognition (Khan et al., 2012b, 2013c), object de-
tection (Khan et al., 2012a), texture recognition (Khan et al.,
2013b) and action recognition (Khan et al., 2013a). In this
work, we perform a comprehensive evaluation of pure color
descriptors, popular in object recognition, for the problem of
texture classification.

3. Combining Multiple Texture Descriptors

Here we present our framework of combining multiple tex-
ture features and obtaining a compact heterogeneous texture
representation. We combine five texture descriptors namely,
completed local binary patterns (Guo et al., 2010), WLD de-
scriptor (Chen et al., 2010), binary Gabor pattern (Zhang et al.,
2012), local phase quantization descriptor (Rahtu et al., 2012)
and binarized statistical features (Kannala and Rahtu, 2012).
We start by providing a brief overview of the five texture de-
scriptors used in this work.
Completed local binary patterns (Guo et al., 2010): The
completed local binary patterns (CLBP) extends the conven-
tional LBP operator by incorporating local difference sign-
magnitude transform information (LDSMT)1. The LDSMT fur-
ther consists of two components, namely the difference sign
and difference magnitude encoded by a binary code. Likewise
the conventional LBP, a region is also represented by its cen-
ter pixel encoded by a binary code after global thresholding.
The final image representation is obtained by concatenating the
three binary code maps to form a single histogram.
WLD descriptor (Chen et al., 2010): The WLD descriptor is
inspired by Weber’s Law and encodes both differential excita-
tions and orientations at locations. The first component, differ-
ential excitation, captures the ratio between the intensity differ-
ence of a pixel with its neighbors and the intensity of the current
pixel. The second component captures the gradient orientation
of the current pixel.
Binary Gabor patterns (Zhang et al., 2012): The binary Ga-
bor patterns (BGP) is a rotation invariant texture descriptor. Un-
like MR8 filters (Varma and Zisserman, 2010), BGP uses pre-
defined rotation invariant binary patterns and does not require
a pre-training phase to learn a texton dictionary. Unlike LBP,
where each sign is binary coded from the difference of two sin-
gle pixels, BGP adopts the difference of regions to counter the
noise sensitivity problem.
Local phase quantization (Rahtu et al., 2012): The local
phase quantization (LPQ) descriptor works by quantizing the
phase information of the Fourier transform and is robust to im-
age blur. To counter the problem of heavy image blur, the ap-
proach uses short-term Fourier transform with a uniform func-
tion. A data correlation scheme is also incorporated into the
descriptor which plays a crucial role in case of a sharp image.
The LPQ descriptor is shown to provide excellent results for
both texture and face recognition tasks.
Binarized statistical descriptor (Kannala and Rahtu, 2012):
The binarized statistical image feature (BSIF) represents each

1We experimented with different variants of LBP and found CLBP to pro-
vide superior performance.

pixel by a binary code. These binary codes are constructed by
learning a set of basis vectors from natural images using inde-
pendent component analysis and an efficient scalar quantization
scheme. The number of basis vectors determines the length of
the pixel binary codes used to construct the final histogram of
an image.

In our approach, each image is represented by the five afore-
mentioned texture description methods. The final representa-
tion is obtained by concatenating all five texture representations
into a single histogram, H = [ht1, ht2, ht3, ht4, ht5]. This multi-
texture histogram is then input to the classifier for texture clas-
sification.

3.1. Compact Multi-Texture Representation

The multi-texture representation has the disadvantage of be-
ing high-dimensional (more than 3k of size) for an image. This
is problematic as it significantly increases the computational
time and memory usage in the classification stage. Recently,
Elfiky et al. (2012) proposed a compression approach using
the DITC algorithm (Dhillon et al., 2003) to counter the high-
dimensionality issue of the bag-of-words based spatial pyramid
representation. In this work, we also use the same underlying
approach to compress the high-dimensional multi-texture rep-
resentation. However, the difference with the work of Elfiky
et al. (2012), is that here we investigate the DITC algorithm
to solve the problem of compressing multi-texture histogram to
obtain a single heterogeneous texture representation.

The DITC algorithm has been shown to obtain excellent re-
sults in reducing large histograms to compact ones. The al-
gorithm is designed to find a fixed number of clusters that
minimize the loss in mutual information between clusters and
the category labels of training images. The DITC algorithm
works on the class-conditional distributions over the texture
histograms. The class-conditional estimation is measured by
the probability distributions p (R|h), where R = {r1, r2, ..., rO} is
the set of O classes. The DITC algorithm works by estimating
the drop in mutual information I between the histogram H and
the class labels R. The transformation from the original texture
histogram H to the new representation HR = {H1,H2, ...,HJ}

(where every H j represents a group of words in the original un-
compressed histogram) is equal to

∆I = I (R; H) − I
(
R; HR

)
=

J∑
j=1

∑
h∈H j

p (h) KL(p(R|h), p(R|H j)), (1)

where KL is the Kullback-Leibler divergence between the two
distributions defined by

KL(p1, p2) =
∑
z∈Z

p1(z) log
p1(z)
p2(z)

. (2)

The multi-texture histogram bins with similar discriminative
power are merged together over the classes. For more details,
we refer to Dhillon et al. (2003) on the DITC algorithm.
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Fig. 1. Example images from the four texture datasets, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10, used in our experiments.

4. Combining Color and Texture

There exist two main strategies namely, early and late fu-
sion, to combine color and texture information (Maenpaa and
Pietikainen, 2004; Khan et al., 2013b). Early fusion works by
computing texture descriptor on the color channels. In this way,
a joint color-texture representation is obtained that combines
the two cues at the pixel-level. Early fusion based image repre-
sentation has the advantage of being more discriminative since
the two cues are combined at the pixel level. However, early
fusion representations suffers from the problem of high dimen-
sionality.

Contrary to early fusion, late fusion combines the two cues
at the image level. A separate histogram is constructed for
color and texture. The two visual cues are then combined by
concatenating the separate histograms into a single representa-
tion. The late fusion approach has shown to provide superior re-
sults for texture recognition (Maenpaa and Pietikainen, 2004;
Khan et al., 2013b), object recognition (Khan et al., 2012b),
object detection (Khan et al., 2012a) and action recognition
(Khan et al., 2013a). Therefore, in this work, we use late fusion
scheme for combining color and texture information. Next, we
provide an overview of pure color descriptors.

4.1. Pure Color Descriptors
Here, we provide a brief overview of the pure color descrip-

tors, popular in object recognition, for the problem of texture
description.
RGB histogram (van de Sande et al., 2010): We use the stan-
dard RGB descriptor as a baseline. The RGB histogram is con-
structed by combining the three histograms from the R, G and
B channels. The descriptor has 45 dimensions.
rg histogram (van de Sande et al., 2010): The rg histogram
is based on the normalized RGB color model. The descriptor
is 45 dimensional. It is invariant to light intensity changes and
shadows.
Opponent-angle histogram (van de Weijer and Schmid,
2006): Unlike other pure color descriptors based on the (trans-
formed) RGB values of the image, the opponent-angle his-
togram is constructed based on image derivatives. The his-
togram has 36 dimensions.

HUE histogram (van de Weijer and Schmid, 2006): The
HUE descriptor was proposed by van de Weijer and Schmid
(2006) and consists of 36 dimensions. In this descriptor, the
hue is weighted by the saturation of a pixel in order to counter
the instabilities in hue.
Transformed Color Distribution (van de Sande et al., 2010):
The transformed color descriptor is derived by normalizing
each channel of RGB histogram. The descriptor has 45 dimen-
sions. It is invariant with respect to scale and light intensity.
Color Moments and Invariants (van de Sande et al., 2010):
In the work of van de Sande et al. (2010), the color moment his-
togram is constructed by using all generalized color moments
up to the second degree and the first order. The color moment
invariants are constructed using generalized color moments.
The color moments histogram has 36 dimensions whereas the
color moment invariants has 24 dimensions.
Hue-saturation descriptor: The hue-saturation descriptor is
invariant to luminance variations. The histogram has 36 dimen-
sions (nine bins for hue times four for saturation).
Color names (van de Weijer et al., 2009): Most of the color
descriptors discussed above are designed to achieve photomet-
ric invariance. Instead, color names descriptor aims at provid-
ing a certain degree of photometric invariance with discrimina-
tive power. The color names are used in daily life by humans
to communicate color, such as “black”, “blue” and “orange”.
Here, we use the 11 dimensional color names mapping learned
from the Google images by van de Weijer et al. (2009).
Discriminative color descriptors (Khan et al., 2013c): The
discriminative color descriptors by Khan et al. (2013c) take
an information theoretic approach to the problem of color de-
scription. The method works by clustering color values together
based on their discriminative power with an objective function
to minimize the drop of mutual information of the final color
representation. In this work, we use the three universal color
representations with 11, 25 and 50 dimensions, respectively.

5. Experimental Results

To validate the performance of the proposed framework, we
use four challenging datasets, namely KTH-TIPS-2a, KTH-
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TIPS-2b, FMD and Texture-10. The KTH-TIPS-2a dataset con-
sists of 11 texture categories with images at 9 different scales, 3
poses and 4 different illumination conditions. We use the stan-
dard protocol (Caputo et al., 2005; Sharma et al., 2012; Chen
et al., 2010) by reporting the average classification performance
over the 4 test runs. In each time, all the images from 1 sample
are used for test while the images from the remaining 3 sam-
ples are used as a training set. The KTH-TIPS-2b dataset also
consists of 11 texture categories. Here, for each test run, all
images from 1 sample are used for training while all the im-
ages from remaining 3 samples are used for testing. The FMD
dataset consists of 10 texture categories with 100 images (Sifre
and Mallat, 2013; Sharan et al., 2013) for each class where 50
images are used for training and 50 for testing. The Texture-10
dataset consists of 10 different texture categories (Khan et al.,
2013b) where 25 images per class are used for training and 15
for testing. Figure 1 shows example images from the four tex-
ture datasets.

Throughout our experiments, we use one-versus-all SVM us-
ing the χ2 kernel (Zhang et al., 2007). Each test instance is
assigned the category label of the classifier giving the highest
response. The final classification score is obtained by calculat-
ing the mean recognition rate per category.

5.1. Experiment 1: Combining Texture Features

We start by providing results for multi-texture representa-
tions. The results are presented in Table 1. For the CLBP
descriptor, we use multiple radius values since it was shown
to improve the performance compared to using a single radius
value. On the KTH-TIPS-2a and Texture-10 datasets, CLBP
provides the best performance compared to other single tex-
ture features. Among the five texture descriptors, the best re-
sults are achieved when using the BGP descriptor on the KTH-
TIPS-2b dataset and WLD descriptor on the FMD dataset. In
case of FMD and KTH-TIPS-2b datasets, the BSIF descriptor
alone provides inferior results compared to other four texture
descriptors. However, the performance still improves by 2.1%
and 1.3% respectively on these datasets by adding the BSIF de-
scriptor.

Combining the five texture representations in a single rep-
resentation significantly improves the performance on all
datasets. On the KTH-TIPS-2a dataset, a significant gain of
4.0% is obtained by combining multiple features compared to
the single best representation. Similarly, gains of 5.6%, 7.8%
and 2.4% are obtained by combining multiple texture features
on the KTH-TIPS-2b, FMD and Texture-10, respectively. The
results clearly suggest that different texture representations pos-
sess complementary information and should be combined to ob-
tain a significant performance boost.

5.2. Experiment 2: Compact Multi-Texture Features

As discussed above, combining multi-texture representations
improve the overall performance. However, this performance
improvement comes at the price of high dimensionality. Here,
we present the results obtained, using the approach described
in Section 3.1, to compress the high dimensional multi-texture

Table 1. Classification accuracy (%) of different texture representations on
four texture datasets. In all cases, combining multi-texture representations
significantly improves the performance compared to the single best texture
method.

Method Dimension KTH-TIPS-2a KTH-TIPS-2b FMD Texture-10
CLBP Guo et al. (2010) 1944 76.1 ±5.6 61.5 ±2.3 43.6 76.9
WLD Chen et al. (2010) 512 68.5 ±5.1 56.0 ±2.8 43.8 74.7
BGP Zhang et al. (2012) 216 76.8 ±4.9 63.3 ±3.4 43.2 66.0
LPQ Rahtu et al. (2012) 256 67.7 ±5.6 54.4 ±2.7 41.0 75.3

BSIF Kannala and Rahtu (2012) 256 70.0 ±5.7 54.3 ±2.8 34.4 66.0
CLBP + WLD 2456 78.1 ±4.8 63.7 ±2.8 46.6 77.8

CLBP + WLD + BGP 2672 79.2 ±5.1 65.1 ±2.3 48.1 78.6
CLBP + WLD + BGP + LPQ 2928 79.9 ±4.9 67.6 ±2.6 49.5 78.9

CLBP + WLD + BGP + LPQ + BSIF 3184 80.8 ±5.3 68.9 ±2.9 51.6 79.3

Table 2. Classification accuracy (%) obtained when using the original high-
dimensional texture and compact texture representations. Note that the
compression method reduces the dimensionality with little or no loss in
accuracy.

Method Dimension KTH-TIPS-2a KTH-TIPS-2b FMD Texture-10
Original Texture Feature 3184 80.8 ±5.3 68.9 ±1.7 51.6 79.3
Compact Texture (DITC) 500 82.2 ±5.4 69.0 ±1.6 49.0 78.0

representation.We fix the final dimension of our multi-texture
representation to 500.

Table 2 shows the results obtained on the four texture
datasets. The DITC compression method reduces the dimen-
sions from 3184 to 500 without any significant loss in accuracy.
Surprisingly, on the KTH-TIPS-2a and KTH-TIPS-2b datasets,
the low-dimensional compact representation improves the per-
formance compared to the original representation. This demon-
strates that the DITC method removes the redundancy while in-
creasing the discriminative power in certain cases such as KTH-
TIPS-2a and KTH-TIPS-2b datasets.

We also compared our texture compression approach with
the discriminative texture feature selection method (Guo et al.,
2012) on Texture-10 dataset. The method (Guo et al., 2012)
learns a selection of LBP patterns based on robustness, discrim-
inative power and representation of the features. We use the
same feature representation (CLBP), having rotation invariance
and a pixel neighborhood of 16, for both compression meth-
ods. The original representation is reduced to 500 using the
two compression methods. The original feature representation
with 8k dimensions provides a recognition rate of 71.3%. The
feature selection method (Guo et al., 2012) obtains a classi-
fication rate of 70.0%. Our DITC based compression method
improved the performance by providing an accuracy of 72.6%.

Additionally, we also compare the DITC compression
method with conventional approaches for very low-dimensional
representations. We compare with standard compression meth-
ods namely, PCA, PLS and Diffusion maps. Figure 2 shows
results obtained using different compression techniques on the
FMD and Texture-10 datasets. The three compression methods,
PCA, PLS and Diffusion maps provide inferior performance on
both datasets. The DITC based compression method signifi-
cantly outperforms other compression methods even for very
compact texture representations.

5.3. Experiment 3: Pure Color Descriptors
Here, we provide results of our comprehensive evaluation of

color descriptors for texture recognition. Table 3 shows the re-
sults obtained using different color description methods on the
four texture datasets. On the KTH-TIPS-2a and KTH-TIPS-2b
datasets, RGB descriptor provides a recognition score of 55.5%
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Fig. 2. Classification accuracy (%) obtained by compressing the multi-
texture representation using different compression methods. Top row: re-
sults on the FMD dataset. Bottom row: results on the Texture-10 dataset.
The best results are obtained using the DITC based compression technique.

and 42.1% respectively. The conventional color names provides
a classification performance of 56.8% and 44.2% respectively.
The best results are obtained using discriminative color descrip-
tors with 50 dimensions. Similarly, on the FMD and Texture-
10 datasets, the discriminative color names with 50 dimensions
provide the best performance.

The results clearly demonstrate the effectiveness of using a
discriminative color description approach that aims at maximiz-
ing the discriminative power while maintaining a certain degree
of photometric invariance. Therefore, we select the discrimina-
tive color descriptors with 50 dimensions as an explicit color
representation. In our final experiment, we combine the dis-
criminative color descriptors with our proposed compact tex-
ture representation. The texture and color representations are
concatenated in a late fusion manner which is then input to the
classifier.

5.4. Comparison with State-of-the-art

Table 4 shows a comparison with state-of-the-art approaches
on four texture datasets. On the KTH-TIPS-2a dataset, the
method of Sharma et al. (2012) based on local-high-order statis-
tics provides a classification accuracy of 73.0%. The approach
by Lee et al. (2012) based on local color vector binary patterns

Table 3. Comparison (%) of pure color descriptors on four texture datasets.
Note that the best performance is obtained by using discriminative color
names with 50 dimensions.

Method Dimension KTH-TIPS-2a KTH-TIPS-2b FMD Texture-10
RGB 50 55.5 ±5.8 42.1 ±1.8 20.3 52.3

rg 30 54.3 ±6.2 43.3 ±2.3 22.2 52.7
HUE 36 53.3 ±6.1 43.1 ±2.1 21.6 50.7

Opp-angle 36 50.1 ±6.2 45.4 ±1.7 17.4 34.0
Transformed color 45 52.8 ±5.3 44.8 ±1.8 23.0 40.0

Color moments 30 54.9 ±5.7 45.1 ±1.6 26.0 50.1
Color moments inv 24 50.1 ±5.5 41.0 ±2.4 10.0 44.6

HS 36 53.6 ±5.2 42.9 ±2.9 26.0 44.6
Color names 11 56.8 ±5.8 44.2 ±1.7 25.6 56.0

Discriminative color descriptors 11 55.7 ±5.6 43.9 ±2.1 22.0 50.7
Discriminative color descriptors 25 57.4 ±5.8 46.4 ±2.2 25.6 54.0
Discriminative color descriptors 50 60.1 ±5.7 48.1 ±1.9 27.4 58.0

Table 4. Comparison (%) with state-of-the-art approaches on four texture
datasets. Our approach provides the best performance on KTH-TIPS-2a,
KTH-TIPS-2b and Texture-10 datasets.

Method KTH-TIPS-2a KTH-TIPS-2b FMD Texture-10
LHS Sharma et al. (2012) 73.0 - - -

TFT Timofte and Gool (2012) - 66.3 55.7 -
PIF Sharan et al. (2013) - - 57.1 -

CNLBP Khan et al. (2013b) - - - 77.0
PM Khan et al. (2013b) - - - 73.0
WLD Chen et al. (2010) 56.4 - - -

MWLD Chen et al. (2010) 64.7 - - -
SDIC Sifre and Mallat (2013) - - 41.4 -

LQP ul Hussain and Triggs (2012) 64.2 - - -
LTP Tan and Triggs (2010) 60.0 - - -
CMR Zhang et al. (2013) 69.4 - - -
ELBP Liu et al. (2012b) - 58.1 - -
SRP Liu et al. (2012a) - - 48.2 -

LBP-HF Ahonen et al. (2009) - 54.6 - -
VZ-MR8 Varma and Zisserman (2010) - 46.3 - -

CMLBP Li and Fritz (2012) 73.1 - - -
aLDA Liu et al. (2010) - - 44.6 -

ETF Satpathy et al. (2014) 62.6 - - -
LBPD Hong et al. (2014) 74.9 - - -
LVCBP Lee et al. (2012) 61.7 53.6 38.4 58.7

This paper 82.7 70.6 54.2 82.0

achieves a recognition rate of 61.7%. Our approach, while be-
ing compact, outperforms the state-of-the-art methods with a
significant gain of 7.8% over the best reported result. On the
KTH-TIPS-2b dataset, the extended LBP approach (Liu et al.,
2012b) provides an accuracy of 58.1%. A combination of LBP
and Fourier features achieves an accuracy of 54.6%. Our ap-
proach outperforms existing methods on this dataset by provid-
ing a recognition accuracy of 70.6%.

On the FMD dataset, a training-free approach by Timofte and
Gool (2012) obtains a recognition accuracy of 55.7%. Our ap-
proach, despite its simplicity, achieves an accuracy of 54.2%.
The best results on this dataset are obtained using perceptually
inspired features (Sharan et al., 2013). It is worthy to mention
that our approach neither uses any ground-truth masks nor any
perceptually inspired features. Such features are complemen-
tary to the approach presented in this paper and can be com-
bined to obtain further boost in performance. Finally, on the
Texture-10 dataset, our approach outperforms the color names
and LBP fusion methods (Khan et al., 2013b) by achieving a
recognition accuracy of 82.0%.

6. Conclusion

In this paper we investigated the problem of texture recog-
nition in images. Firstly, we have shown that fusing different
texture representations significantly improves the performance
compared to the single best method. To counter the high-
dimensionality problem of the image representation, we pro-
posed to use the DITC approach. Additionally, we performed a
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comprehensive evaluation of pure color descriptors, popular in
image classification, for the task of texture recognition.

The results show that our compact texture representation with
a dimensionality of only 500 significantly improved the perfor-
mance over existing texture classification methods. Among the
color descriptors, the discriminative color descriptors provide
the best results. Finally, we fused the discriminative color de-
scriptors with our compact texture representation and showed
that it can achieve state-of-the-art performance.

In this work, we used a simple late fusion technique to com-
bine the color and texture features. Future work includes inves-
tigating sophisticated fusion approaches to combine the color
and texture descriptions. A further comparison of the DITC
approach with other compression approaches (Jiang, 2009;
Scholkopf et al., 1998) can provide a further insight on its ap-
plicability to other computer vision applications.
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