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Abstract

In recent years several works have aimed at exploit-
ing color information in order to improve the bag-of-
words based image representation. There are two stages
in which color information can be applied in the bag-of-
words framework. Firstly, feature detection can be im-
proved by choosing highly informative color-based re-
gions. Secondly, feature description, typically focusing
on shape, can be improved with a color description of
the local patches. Although both approaches have been
shown to improve results the combined merits have not
yet been analyzed. Therefore, in this paper we inves-
tigate the combined contribution of color to both the
feature detection and extraction stages. Experiments
performed on two challenging data sets, namely Flower
and Pascal VOC 2009; clearly demonstrate that incor-
porating color in both feature detection and extraction
significantly improves the overall performance.

1. Introduction

Put succinctly, the bag-of-words based image repre-
sentation is currently the most successful approach for
object and scene recognition. The first stage, called fea-
ture detection, involves region selection. As a next step
all selected regions are represented using local descrip-
tors followed by vector quantization into a fixed-size
codebook of visual words. Finally each image is repre-
sented by a histogram of the visual words. A classifier
(typically a non-linear SVM) is then used to recognize
the categories based on these histogram representations
of the images. In this paper we focus on the first two
stages, namely feature detection and extraction, for the
incorporation of color information.

The aim of feature detection is to find discriminative
regions in images. Most existing methods only use the
shape saliency as a criterion for detection, which is ex-
tracted from the luminance information. However the
use of color information could lead to the detection of

Figure 1: Top row: Laplacian-of-Gaussian and Harris
Laplace based on luminance. Bottom row: Laplacian-of-
Gaussian and Harris Laplace based on color boosting. The
color boosted detector focuses on the more informative fea-
tures. Only the fifty strongest detected regions are depicted.
The radius of the circles indicates the scale selected.

more salient regions (see Fig. 1). To date, there have
been limited investigations into the usage of color at
the detection stage. Recently [8, 1], it has been shown
that color can be successfully used to improve the per-
formance of detection. However, none of these studies
have evaluated the combined impact of color at both the
detection and description levels for object recognition.

Adding color in the description phase of the bag-
of-words framework has been more widely studied
[11, 9, 6]. Two well-known approaches to fuse color
and shape information are early and late fusion. In early
fusion, a joint color-shape vocabulary is constructed
whereas late fusion concatenates histogram representa-
tion of both color and shape, obtained independently.

Recently Fahad et al. [3] proposed a novel way
of adding the color information where color is used
to guide attention by means of a top-down category-
specific attention map employed to modulate the shape
words computed using a standard bag-of-words ap-
proach. This approach was shown to outperform both



early and late fusion. In such a framework the contribu-
tion of color at the feature detection stage is still not in-
vestigated. The color attention approach focuses on ob-
taining a compact image representation by combining
the advantages of both early and late fusion schemes. In
such a framework the contribution of color at the feature
detection stage is still not investigated and ignored.

The review of the existing research shows that color
feature detection improves results when using lumi-
nance descriptors [8], and that color feature detection
combined with color feature description improves re-
sults [9]. However, the question of whether or not both
are required to obtain optimal results has not yet been
answered. Therefore, in this paper, we investigate the
performance gain obtained from color in the feature de-
tection stage and in the feature description stage sepa-
rately. Results show that for optimal results color infor-
mation should be exploited in both the feature detection
and description phase.

2. Color Feature Detection

Although the use of color information is limited by
various practical difficulties, the conversion to gray-
value has a number of side-effects that are particularly
undesirable for local feature detection. It is well known
that gray-value versions of color images do not preserve
chromatic saliency, i.e. regions that exhibit chromatic
variation often lose their distinctiveness when mapped
to scalars based on isoluminance. To exploit the color
information of images, we need to (1) use a representa-
tion that makes the color saliency explicit, and (2) ex-
tend multi-scale feature extraction theory from scalars
to vectors. In the following we extend three of the
most commonly used detectors [5], namely Laplacian-
of-Gaussian, Harris-Laplace, and Hessian, to incorpo-
rate color saliency.

2.1 Color saliency

The color saliency boosting algorithm has provided
an efficient method to exploit the saliency of color edges
based on information theory. It was proposed by van de
Weijer et al. [10] and it has been successfully applied to
image retrieval and image classification [8] [9].

Let f be a color image and fx = (Rx Gx Bx) its
corresponding spatial derivative. The information con-
tent of first-order directional derivative in a local neigh-
borhood is given by I(fx) = −log(p(fx)), where p(fx)
is the probability of the spatial derivative. Note that a
derivative has a higher content of information if it has a
low probability of occurrence.

Figure 2: Transformation of color derivatives distribution by
the color saliency boosting algorithm. It first decorrelates the
original distribution, and then applies a scaling of the axes.

The color derivatives distribution is dominated by a
principal axis of maximum variation, caused by the lu-
minance, and two minor axes, attributed to chromatic
changes. This means that our image representation as-
signs a high probability to changes in luminance with
respect to color changes. Therefore, the color saliency
boosting function g(.) is a linear transformation that
makes these probabilities more uniform.

Consider the first-order color derivatives, fx which
form a zero-mean distribution that can be characterized
by its second-order statistics, i.e. its covariance matrix
Σx = E[fTx fx], whose eigenvectors define three new
axes in which the components of the distribution are
decorrelated and can be rescaled. Therefore, this algo-
rithm transforms this distribution into a more homoge-
neous by applying a decorrelation and whitening:

g(fx) = Σ
− 1

2
x fx, (1)

therefore we have a new distribution with the same vari-
ance in all directions so that changes in luminance and
color have the same impact for feature detection. This
is depicted in Fig. 2. Similar equations hold for fy .

Note that the same influence of luminance changes
on the chromatic changes in the image is reflected not
only in the derivatives of first order, but also in higher
order. Therefore the extension of this theory to higher
order operators is straightforward. For example, for sec-
ond order derivatives we can define the color saliency
boosting function as

g(fxx) = Σ
− 1

2
xx fxx, (2)

where Σxx is the covariance matrix of the second-order
directional derivatives. Similar equations hold for fxy
and fyy . Another property of this transformation is that
due to its linearity it can also be applied to the origi-
nal image as a preprocessing operation before detection.
Fig. 3 illustrates two examples of edge detection.

2.2 From luminance to color

The extension from luminance to color signals is an
extension from scalar to vector signals. A basic ap-



Figure 3: Comparison for edge detection. Top row: Original
images. Middle row: RGB color edges. Bottom row: color-
boosted edges. RGB edges are more biased by luminance.

proach to extend existing detectors to color is to com-
pute the derivatives of each channel separately and then
combine the partial results. However, combining the
first derivatives with a simple addition of the separate
channels results in cancellation in the case of oppos-
ing vectors, and the same situation occurs for second-
derivative operators. To overcome this problem, Di
Zenzo [13] proposed the color tensor defined as

G =

[
R2

x+G2
x+B2

x RxRy+GxGy+BxBy

RxRy+GxGy+BxBy R2
y+G2

y+B2
y

]
(3)

This definition can be considered as a simple extension
of the second moment matrix to color, and it has been
successfully used to extend first order operators to color.
We compute the color Harris-Laplace detector using

det(G)− αtrace2(G) > threshold (4)

where α and threshold are two detector parameters.
However, it does not generalize to the second-derivative
operators, like the Hessian matrix. Therefore, new
methods are required to combine the differential struc-
ture of color images in a principled way.

The definition of Laplacian-of-Gaussian operator,
among many other state-of-the-art detectors, comes
from the Hessian matrix. Thus, in order to extend this
operator to color we need a precise mathematical def-
inition of the Hessian matrix for color images, which

consider the problem of opposing channels. Shi et al.
[7] showed an extension of this matrix to color using a
quaternion representation of color images, which over-
comes the problem of opposing channels. From this
definition it can be demonstrated that it is possible to
derive an extension to color by combining channels in a
vectorized fashion. Therefore, we extend the Laplacian-
of-Gaussian detector to multiple channels combining
responses of individual channels using a generalized
scale-normalized Laplacian operator defined by

Color LoG(σ) = σ2‖(fxx + fyy)‖ (5)

And we can define the Color Hessian detector by

Color Hessian(σ) = σ2‖(fxxfyy − fxy
2)‖ (6)

where fxx , fyy and fxy are the second-order direc-
tional derivatives with scale σ, and ‖ · ‖ is the vector
norm. This extension leads to a scale-space representa-
tion which includes the contributions of luminance and
chromatic components in a scalar-valued representa-
tion. In Fig. 1 the results of color-boosted Laplacian-of-
Gaussian and Harris-Laplace are provided. It is shown
that color-boosted detectors capture more informative
regions as compared to luminance-only detectors 1.

3. Color Feature Description

To apply color in the feature description step, we use
the Color Attention method [3] which was shown to ob-
tain state-of-the-art results.

The human visual system has a remarkable ability
of reducing the computational cost of a data-driven vi-
sual search by means of an attentional mechanism. The
two distinctive ways of directing attention are bottom-
up, which involves detecting salient regions in an im-
age used for the deployment of visual attention and,
top-down, which makes use of prior knowledge avail-
able for a specific target to guide the visual attention.
It is further believed that basic features of visual ob-
jects are processed separately before they are combined
in the presence of attention for the final representation.
Similarly, in our framework, color and shape are pro-
cessed separately before they are combined by means
of attention. This attention is top-down in nature and is
guided by the color feature (attention cue) of visual ob-
jects. The attention cue describes our prior knowledge
about the categories we are looking for and is further
deployed to weight the shape features (descriptor cue).

1Code of the color-based detec-
tors proposed here is available on-line:
http://cat.cvc.uab.es/∼darojas/FeatureDetection/FeatureDetection.html



Within the bag-of-words framework each image Ii,
i=1,2,...,N contains a number of detected local fea-
tures fij , j=1,2,...,M i . These local features are then
represented by the visual words wk

i , i=1,2,...,V k and
k ∈ {s, c} for the two cues, shape and color. The com-
putation of top-down color attention based image repre-
sentation is done according to:

n
(
ws|Ii, class

)
=

Mi∑
j=1

p
(
class|wc

ij

)
δ
(
ws

ij ,w
s
)

(7)

The probabilities p
(
class|wc

ij

)
are computed by us-

ing Bayes,

p (class|wc) ∝ p (wc|class) p (class) (8)

where p (wc|class) is the empirical distribution,

p (wc|class) ∝
∑
Iclass

Mi∑
j=1

δ
(
wc

ij ,w
c
)
, (9)

obtained by summing over the indexes to the training
images of the category Iclass. We use the training
data for computing the uniform prior over the classes
p (class). By computing p

(
class|wc

ij

)
for all local fea-

tures in an image, a class-specific color attention map is
constructed. This map is used to modulate the sampling
of shape features; in regions with high attention more
shape features are sampled than in regions with low at-
tention. This leads to a different distribution over the
same shape visual words for each category. The final
image representation is obtained by concatenating all
the class-specific histograms.

4. Experiments

Here we analyze the relative performance gain ob-
tained while using color in the feature detection and de-
scription phase for object recognition.
Implementation Details: In our experiments we use
the detectors proposed in section 2 together with a
multi-scale Grid. The SIFT descriptor is used to cre-
ate a shape vocabulary and the Color Names and HUE
descriptors are used to create color vocabularies. We
abbreviate our results with the notation convention CA
(descriptor cue, attention cues) where CA stands for
Color Attention based bag-of-words. In our experi-
ments we use a standard nonlinear SVM with a χ2 ker-
nel for the Flower data set and intersection kernel [4]
for the Pascal VOC 2009 data set since it requires sig-
nificantly less computational time, while providing per-
formance similar to that using a χ2 kernel. We tested
our approach on two different and challenging data sets,

Figure 4: Example from the two data sets The top two rows
show images from the Flower data set and the bottom two
rows provide examples from the Pascal VOC 2009 data set.

namely Flower and PASCAL VOC Challenge 2009.
The Flower data set 2 consists of 17 classes of different
varieties of flower species and each class has 80 images,
divided into 60 training and 20 test images. The PAS-
CAL VOC 2009 data set 3 is currently the benchmark
in image classification. It consists of 13704 images of
20 classes with 7054 training images and 6650 test im-
ages. Fig. 4 shows some of the images from these two
data sets.
Oxford Flower Set: Image classification results on the
Flower data set illustrate the performance of our ap-
proach on a data set where both color and shape features
are important as some flowers are clearly distinguished
by shape, e.g. daisies and some by color, e.g. fritillaries.

Method Detector Score
SIFT Intensity 72
SIFT Boosted 73
SIFT Both 73

CA(SIFT, {CN,HUE}) Intensity 85
CA(SIFT, {CN,HUE}) Boosted 89
CA(SIFT, {CN,HUE}) Both 89

Table 1: Classification Score on Flower Data set.

The results in Table 1 clearly demonstrate the con-
tribution of color in the feature detection phase. The
color boosted interest point sampling strategies signif-
icantly outperform the color attention results obtained
by using only intensity information in feature detec-
tion. Combining intensity-based and color-boosted fea-
ture detection provides the same results as using only
color-boosted feature detectors. Our approach leads to
state-of-the-art results on this data set comparable with

2The Flower set at http://www.robots.ox.ac.uk/vgg/research/flowers/
3The PASCAL VOC Challenge 2009 at http://www.pascal-

network.org/challenges/VOC/voc2009/



Figure 5: Results per category on Pascal 2009 data set: the
results are split out per object category. Note that the com-
bination of intensity and color-boosted detection along with
color attention provides the best results. But on categories
such as potted-plants color-boosted detectors provide the best
results.

the ones previously reported in literature [6, 2, 3, 12].
Pascal VOC 2009: Finally, we present results on a data
set where the shape cue is predominant and color plays a
subordinate role. For this data set the average precision
is used as a performance metric in order to determine
the accuracy of recognition results.

Method Detector Mean AP
SIFT Intensity 51.3
SIFT Boosted 49.8
SIFT Both 52.1

CA(SIFT, {CN,HUE}) Intensity 54.7
CA(SIFT, {CN,HUE}) Boosted 54.6
CA(SIFT, {CN,HUE}) Both 56.1

Table 2: Pascal VOC 2009 MAP Scores.

Table 2 shows the results for both SIFT and Color
Attention. The results (SIFT and CA) based on
intensity-based point detection are slightly better than
those of color-boosted detection schemes. This is due
to the fact that this data set is predominantly shape-
based and color alone is not a substantial cue. However
the combination of intensity and color-boosted detec-
tion significatively improves the results suggesting that
the convincing gain is owing to the complementary na-
ture of both these detection schemes. The results per
category are presented in Fig. 5.

Our final submission for the 2009 Pascal competition
involves an extension of the framework proposed in this
paper with more descriptors. Further, combining the
framework with object localization scores led to results
that are very close to state-of-the-art.

5. Conclusion

We presented an analysis on how to optimally apply
color in the bag-of-words approach to image classifica-
tion. The outcome of our experiments show that color
should be used both in the feature detection and the fea-
ture extraction stages. In particular, we show that color
feature detection does further improve image classifica-
tion results based on the color attention approach.
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