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Abstract: The dichromatic reflection model (DRM) predicts that color distributions form a parallelogram in color space,
whose shape is defined by the body reflectance and the illuminant color. In this paper we resume the assump-
tions which led to the DRM and shortly recall two of its main applications domains: color image segmentation
and photometric invariant feature computation. After having introduced the model we discuss several limi-
tations of the theory, especially those which are raised once working on real-world uncalibrated images. In
addition, we summerize recent extensions of the model which allow to handle more complicated light interac-
tions. Finally, we suggest some future research directions which would further extend its applicability.

1 INTRODUCTION

Understanding the color content of images is a very
challenging problem. The colors we observe are a
mix of the illuminant color and the object color. Fur-
thermore, the color depends on a number of other fac-
tors such as viewpoint, illuminant angle with respect
to surface normal, shadow and shading effects, spec-
ularities, and the sensitivity curves of the acquisition
devise. Physics laws of light reflectance provide a
means to disentangle the variety of causes which re-
sulted in the color measurement (Kubelka and Munk,
1931).

One of the most popular reflection models is
the dichromatic reflection model (DRM) proposed by
Shafer (Shafer, 1985). The model focusses on the
color aspects of light reflection and has only limited
usage for geometry recovery of scenes. It separates
reflectance into surface body reflectance and interface
reflectance. Both terms can be further separated into
a geometric term, dependent on scene geometry, and
a spectral term which is depended on the wavelength
but independent of geometry. The model is valid for
the class of inhomogeneous materials, which covers
a wide range of materials such as wood, paints, pa-
pers and plastics (but excludes homogeneous materi-
als such as metals). It predicts that values of a single

colored object lie on a parallelogram in color space,
defined by the body reflectance and the illuminant
color.

The original application to which the DRM was
applied, was the separation of shading from specular-
ities (Shafer, 1985). The specularities, being depen-
dent on scene incidental events such as viewpoint and
surface normal, could be removed to simplify color
image understanding. The removal of specularities al-
lowed for improved segmentation algorithms (Klinker
and Shafer, 1990; Maxwell and Shafer, 1997). Fur-
thermore, the estimation of the specularities also pro-
vides an illuminant estimation, thereby allowing for
color constancy. A second application field which
has benefited from the DRM is photometric invariant
feature computation (Gevers and Smeulders, 1999;
van de Weijer et al., 2006).

In this paper, we focus on the dichromatic reflec-
tion model and its applications in computer vision. In
Section 2 the DRM model is explained. Next, in Sec-
tion 3 we discuss two of its main application domains:
image segmentation and photometric invariance. In
Section 4 we look at some limitations of the model
once applied to real-world images. In addition, sev-
eral extensions of the model are suggested.



2 THE DICHROMATIC
REFLECTION MODEL

In this section we rehearse the DRM model pro-
posed by Shafer(Shafer, 1985). The light source is
modeled as a single light source, e(λ), where λ is
the wavelength. For multiple light sources we assume
that the combination can be approximated as a single
light source for the local feature. In this case, the mea-
sured observation values, f = {R,G,B}, of the camera
with spectral sensitivities f C, are modeled by integrat-
ing over the visible spectrum ω,

f(x) = mb (x)
R
ω

b(λ,x)e(λ) fC (λ)dλ+

mi (x)
R
ω

i(λ)e(λ) fC (λ)dλ.
(1)

where b is the surface albedo. We assume neutral in-
terface reflection, meaning that the Fresnel reflectance
i is independent of λ. Accordingly, we will omit i in
further equations. The geometric dependence of the
reflectance is described by the terms mb and mi which
depend on the viewing angle, light source direction
and surface orientation. x denotes the spatial coor-
dinates, and bold face is used to indicate vectors. In
vector notation we can now write:

f(x) = mb (x)cb (x)+mi (x)ci (x) (2)

The reflection of the light consist of two parts: 1.
a body reflection part mb (x)cb, which describes the
light which is reflected after interaction with the sur-
face albedo, and 2. the interface reflection mi (x)ci

which describes the part of the light that is imme-
diately reflected at the surface, causing specularities.
Both parts consist of a geometrical part dependent on
the location in the scene, and a spectral part dependent
on the spectral wavelength.

3 APPLICATIONS OF THE
DICHROMATIC REFLECTION
MODEL

To illustrate the applicability of the DRM model
we shortly touch upon two computer vision fields
which have benefited from the model: color im-
age segmentation and photometric invariant feature
derivation.

3.1 Color Image Segmentation

One of the main challenges in object segmentation is
caused by scene incidental events such as shading and

specularities. The DRM provides a model which pre-
dicts the behavior of color distributions in the case of
such events. The body reflectance of the object forms
a line from the origin of the color space which an-
gle is dependent on both the object color and the il-
luminant color. Specularities will form a second line
in the direction of the illuminant color. This led to
the well-known work of (Klinker and Shafer, 1990)
in which an algorithm is proposed to infer the object
and illuminant color by fitting lines through the L and
T-shapes which are formed in color space (see Fig. 1).

The main problem is that to correctly segment the
image, information on the body reflectances and illu-
minant color is required, and visa versa, to correctly
estimate the body reflectances and illuminant color
a good segmentation is needed (Klinker and Shafer,
1990; Maxwell and Shafer, 1997). This chicken and
egg problem can be tackled in a iterative procedure in
which based on an initial segmentation, hypotheses
for illuminant color and body reflectances are gen-
erated. A solution which does not require segmen-
tation was proposed by Tan and Ikeuchi (Tan and
Ikeuchi, 2005). Based on the observation that spec-
ularities lower the saturation of pixels, they propose
an algorithm that iteratively converges to the specular
free image. Recently the theory has been extended
to multi-spectral images (Huynh and Robles-Kelly,
2010).

Figure 1: Color distributions for a red ball. The superim-
posed arrow indicate the illuminant color. The color dis-
tribution can be easily separated in a body reflectance part
and a part in the specular reflection part in the illuminant
direction.

3.2 Photometric Invariant Features

Here we shortly show how the DRM can be applied
to derive photometrically invariant features. For more
details see (Gevers and Smeulders, 1999), (van de
Weijer et al., 2005).
Zero-order invariants. Let us first consider the case
of a matte surface (mi = 0). For this case normalized
rgb can be considered invariant with respect to light-
ing geometry and viewpoint, mb. Since,

r =
R

R+G+B
=

mbbReR

mb (bReR +bGeG +bBeB)
. (3)



(a) (b) (c) (d)
Figure 2: Photometric invariant image derivatives: a) input image. b) RGB color edges. c) shadow-shading quasi-invariant c)
the specular quasi-invariant. d) the specular-shadow-shading quasi-invariant.

Similar equations hold for normalized g and b.

Furthermore, in the case of a white illuminant
(eR = eG = eB = e) and specular reflectance (mi 6= 0),
opponent colors (Gevers and Smeulders, 1999) can
be proven to be invariant with respect to specularities,
mi. Since,

O1 = 1√
2
(R−G) = 1√

2

(
mbe

(
bR−bG

)
+mie−mie

)

O2 = 1√
6
(R+G−2B)

= 1√
6

(
mbe

(
bR +bG−2bG

)
+2mie−2mie

) ,

(4)
are invariant for mi. The opponent colors are still vari-
ant for lighting geometry variations. Invariance with
respect to both the lighting geometry and specularities
is obtained by hue,

hue = arctan
(

O1
O2

)
= arctan

( √
3
(
bR−bG

)

(bR +bG−2bG)

)

(5)

First-order invariants. Extending this theory to the
first-order structure of images (i.e. to edge-detection)
seems straight-forward. By taking the derivatives of
the zero-invariants derived above, photometrically in-
variant edge detection is achieved. However, the non-
linearities of normalized RGB and hue result in un-
stable image derivatives. A way around this prob-
lem is given in (van de Weijer et al., 2005), where
a class of quasi-invariant image derivatives is pro-
posed. First the standard image derivative is com-
puted fx = {Rx,Gx,Bx}. This derivative is projected
onto a photometrically relevant coordinate system.
Since the derivative operation and coordinate projec-
tion are both linear, the photometric invariants which
are thus computed are more robust too noise and have
greater discriminative power. The solution is similar
to work on color subspaces (Zickler et al., 2008).

As an example we look at shadow-shading invari-
ant image derivatives. Projecting on spherical coordi-

nates results in:

fx =




rx
rϕx

r sinϕ θx


 =




rx
0
0


+ r




0
ϕx

sinϕ θx




(6)
The second part of this equation is independent of
shadow-shading variations, and can be used to con-
struct photometric invariant edge, corner detection,
optical flow, etc. In Fig. 2 an example of photometric
invariant edge detection is given.

4 FUTURE RESEARCH
DIRECTIONS ON DRM

After having briefly looked at application areas of
DRM we will discuss some recent developments. The
extension of the DRM with more complicated light
object interaction models, and the applications of the
DRM to uncalibrated real-world images.

4.1 EXTENSIONS TO THE DRM

In cases that the assumptions made by the original
DRM are not met, more complex reflectance models
are required. One such case is ambient light, i.e. light
coming from all directions. Ambient light occurs in
outdoor scenes where next to the dominant illuminant,
i.e. the sun, there is diffuse light coming from the sky.
Similarly, it occurs in indoor situations where diffuse
light is caused by reflectances from walls and ceilings.
Shafer (Shafer, 1985) models the diffuse light, a, by a
third term

C (x) = mb (x)Cb (x)+mi (x)Ci (x)+aC. (7)

Later work improved the modeling (Maxwell et al.,
2008; Riess et al., 2009) and showed that the ambient
term results in an object color dependent offset which
could perform crucial in handling the case of colored



shadows. Furthermore, in (Maxwell et al., 2008) a
photometric invariant with respect to ambient light is
proposed.

Another case is the presents of multiple illumi-
nants in the scene (a more generalized case of ambi-
ent light). A typical example of a ”multi-illuminant”
is the interreflections occurring between objects in the
complex scenes.

4.2 UNCALIBRATED REAL-WORLD
IMAGES

Most of the early work on DRM (Klinker and Shafer,
1990; Maxwell and Shafer, 1997; van de Weijer et al.,
2005) focussed on high-quality images of relatively
simple objects taken in controlled laboratory settings.
These works have clearly proven the validity of the
theory, but extending the proposed theory thereafter
to real-world images is not straight-forward.

Application of the DRM model to uncalibrated
real-world images led to multiple problems. Un-
known gamma compression leads to non-linearities
in the DRM. The color distribution will still form a
plane in the RGB space. However, specularities will
now trail curves instead of lines in the RGB cube.
Further complications are caused by unknown com-
pression algorithm settings such as JPEG or MPEG.
Based on the observation that the human visual sys-
tem is less sensitive to chromatic changes, compres-
sion algorithms compress color information signifi-
cantly more than luminance, thereby considerably re-
ducing the available color information. In a recent
work Vazquez et al. (Vazquez et al., 2011) track ridges
in the color spaces, and robustly segment objects in
the presence of shadows and specularities for uncali-
brated images.

A second observation which complicates applying
earlier algorithms developed on relatively easy ob-
jects is shown in Fig. 3. For more complex objects the
L and T-shapes (recall Fig. 1) do no longer occur. The
L and T shape theory was based on the assumption of
located specularities for which mb remains constant as
ms changes. For more complex objects this is not true
and new algorithms are needed to infer the illuminant
in these cases.

In conclusion, the DRM model has proven to be
a very useful model for color image understanding.
Its main challenges lie in finding algorithms which
can be applied to uncalibrated real-world images, and
which can solve for more complex reflectance models
which include multiple illuminants and ambient light.

Figure 3: Color distributions for red car. The superimposed
arrow indicate the illuminant color. For the more complex
distribution on the right, deriving the illuminant color from
the shape of the color distribution is unfeasible.
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